Thymoquinone reduces migration and invasion of human glioblastoma cells associated with FAK, MMP-2 and MMP-9 down-regulation


Glioblastoma represent the most frequent primary tumors of the central nervous system and remain among the most aggressive human cancers as available therapeutic approaches still fail to contain their invasiveness. Many studies have reported elevated expression of the Focal Adhesion Kinase (FAK) protein in glioblastoma, associated with an increase in the rates of both migration and invasion. This designates FAK as a promising target to limit invasiveness in glioblastoma. Thymoquinone (TQ), the main phytoactive compound of Nigella sativa has shown remarkable anti-neoplasic activities on a variety of cancer cells. Here, we studied the anti-invasive and anti-migratory effects of TQ on human glioblastoma cells. The results obtained indicated that TQ treatment reduced migration, adhesion and invasion of both U-87 and CCF-STTG1 cells. This was accompanied by a drastic down-regulation of FAK, associated with a reduction of ERK phosphorylation as well as MMP-2 and MMP-9 secretion. This study provides new data on FAK regulation by a natural product (TQ) which could be of a great value for the development of novel therapies in glioblastoma.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Mangiola A, Anile C, Pompucci A, Capone G, Rigante L, De Bonis P (2010) Glioblastoma therapy: going beyond Hercules Columns. Expert Rev Neurother 10(4):507–514

    PubMed  Article  Google Scholar 

  2. 2.

    Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 60(3):166–193

    PubMed  Article  Google Scholar 

  3. 3.

    Zhao J, Guan JL (2009) Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev 28(1–2):35–49

    PubMed  Article  Google Scholar 

  4. 4.

    Schlaepfer DD, Mitra SK, Ilic D (2004) Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim Biophys Acta 1692(2–3):77–102

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Lark AL, Livasy CA, Dressler L, Moore DT, Millikan RC, Geradts J, Iacocca M, Cowan D, Little D, Craven RJ, Cance W (2005) High focal adhesion kinase expression in invasive breast carcinomas is associated with an aggressive phenotype. Mod Pathol 18(10):1289–1294

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Lark AL, Livasy CA, Calvo B, Caskey L, Moore DT, Yang X, Cance WG (2003) Overexpression of focal adhesion kinase in primary colorectal carcinomas and colorectal liver metastases: immunohistochemistry and real-time PCR analyses. Clin Cancer Res 9(1):215–222

    PubMed  CAS  Google Scholar 

  7. 7.

    Beierle EA, Massoll NA, Hartwich J, Kurenova EV, Golubovskaya VM, Cance WG, McGrady P, London WB (2008) Focal adhesion kinase expression in human neuroblastoma: immunohistochemical and real-time PCR analyses. Clin Cancer Res 14(11):3299–3305

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Natarajan M, Hecker TP, Gladson CL (2003) FAK signaling in anaplastic astrocytoma and glioblastoma tumors. Cancer journal (Sudbury, Mass 9 (2):126–133

    Google Scholar 

  9. 9.

    Hecker TP, Grammer JR, Gillespie GY, Stewart J Jr, Gladson CL (2002) Focal adhesion kinase enhances signaling through the Shc/extracellular signal-regulated kinase pathway in anaplastic astrocytoma tumor biopsy samples. Cancer Res 62(9):2699–2707

    PubMed  CAS  Google Scholar 

  10. 10.

    Jones G, Machado J Jr, Tolnay M, Merlo A (2001) PTEN-independent induction of caspase-mediated cell death and reduced invasion by the focal adhesion targeting domain (FAT) in human astrocytic brain tumors which highly express focal adhesion kinase (FAK). Cancer Res 61(15):5688–5691

    PubMed  CAS  Google Scholar 

  11. 11.

    Treasure J (2005) Herbal medicine and cancer: an introductory overview. Semin Oncol Nurs 21(3):177–183

    PubMed  Article  Google Scholar 

  12. 12.

    Gali-Muhtasib H, Roessner A, Schneider-Stock R (2006) Thymoquinone: a promising anti-cancer drug from natural sources. Int J Biochem Cell Biol 38(8):1249–1253

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Padhye S, Banerjee S, Ahmad A, Mohammad R, Sarkar FH (2008) From here to eternity - the secret of Pharaohs: Therapeutic potential of black cumin seeds and beyond. Canc Ther 6(b):495–510

    CAS  Google Scholar 

  14. 14.

    Banerjee S, Padhye S, Azmi A, Wang Z, Philip PA, Kucuk O, Sarkar FH, Mohammad RM (2010) Review on molecular and therapeutic potential of thymoquinone in cancer. Nutr Cancer 62(7):938–946

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Al-Ali A, Alkhawajah AA, Randhawa MA, Shaikh NA (2008) Oral and intraperitoneal LD50 of thymoquinone, an active principle of Nigella sativa, in mice and rats. J Ayub Med Coll Abbottabad 20(2):25–27

    PubMed  Google Scholar 

  16. 16.

    Gali-Muhtasib H, Ocker M, Kuester D, Krueger S, El-Hajj Z, Diestel A, Evert M, El-Najjar N, Peters B, Jurjus A, Roessner A, Schneider-Stock R (2008) Thymoquinone reduces mouse colon tumor cell invasion and inhibits tumor growth in murine colon cancer models. J Cell Mol Med 12(1):330–342

    PubMed  Article  Google Scholar 

  17. 17.

    Jafri SH, Glass J, Shi R, Zhang S, Prince M, Kleiner-Hancock H (2010) Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivo. J Exp Clin Cancer Res 29:87

    PubMed  Article  Google Scholar 

  18. 18.

    Yi T, Cho SG, Yi Z, Pang X, Rodriguez M, Wang Y, Sethi G, Aggarwal BB, Liu M (2008) Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol Cancer Ther 7(7):1789–1796

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Ivankovic S, Stojkovic R, Jukic M, Milos M, Milos M, Jurin M (2006) The antitumor activity of thymoquinone and thymohydroquinone in vitro and in vivo. Exp Oncol 28(3):220–224

    PubMed  CAS  Google Scholar 

  20. 20.

    El-Najjar N, Chatila M, Moukadem H, Vuorela H, Ocker M, Gandesiri M, Schneider-Stock R, Gali-Muhtasib H (2010) Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis 15(2):183–195

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Gurung RL, Lim SN, Khaw AK, Soon JF, Shenoy K, Mohamed Ali S, Jayapal M, Sethu S, Baskar R, Hande MP (2010) Thymoquinone induces telomere shortening, DNA damage and apoptosis in human glioblastoma cells. PLoS One 5(8):e12124

    PubMed  Article  Google Scholar 

  22. 22.

    Rondé P, Giannone G, Gerashymova I, Stoeckel H, Takeda K, Haiech J (2000) Mechanism of calcium oscillations in migrating human astrocytoma cells. Biochimica et Biophysica Acta (Molecular Cell Research) 1498:273–280

    Article  Google Scholar 

  23. 23.

    Cecarini V, Quassinti L, Di Blasio A, Bonfili L, Bramucci M, Lupidi G, Cuccioloni M, Mozzicafreddo M, Angeletti M, Eleuteri AM (2010) Effects of thymoquinone on isolated and cellular proteasomes. FEBS J 277(9):2128–2141

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Xu HY, Qian AR, Shang P, Xu J, Kong LM, Bian HJ, Chen ZN (2007) siRNA targeted against HAb18G/CD147 inhibits MMP-2 secretion, actin and FAK expression in hepatocellular carcinoma cell line via ERK1/2 pathway. Cancer Lett 247(2):336–344

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Mon NN, Hasegawa H, Thant AA, Huang P, Tanimura Y, Senga T, Hamaguchi M (2006) A role for focal adhesion kinase signaling in tumor necrosis factor-alpha-dependent matrix metalloproteinase-9 production in a cholangiocarcinoma cell line, CCKS1. Cancer Res 66(13):6778–6784

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Mon NN, Ito S, Senga T, Hamaguchi M (2006) FAK signaling in neoplastic disorders: a linkage between inflammation and cancer. Ann N Y Acad Sci 1086:199–212

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Shoieb AM, Elgayyar M, Dudrick PS, Bell JL, Tithof PK (2003) In vitro inhibition of growth and induction of apoptosis in cancer cell lines by thymoquinone. Int J Oncol 22(1):107–113

    PubMed  CAS  Google Scholar 

  28. 28.

    Gali-Muhtasib H, Diab-Assaf M, Boltze C, Al-Hmaira J, Hartig R, Roessner A, Schneider-Stock R (2004) Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int J Oncol 25(4):857–866

    PubMed  CAS  Google Scholar 

  29. 29.

    El-Mahdy MA, Zhu Q, Wang QE, Wani G, Wani AA (2005) Thymoquinone induces apoptosis through activation of caspase-8 and mitochondrial events in p53-null myeloblastic leukemia HL-60 cells. Int J Cancer 117(3):409–417

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Abusnina A, Alhosin M, Keravis T, Muller CD, Fuhrmann G, Bronner C, Lugnier C (2011) Down-regulation of cyclic nucleotide phosphodiesterase PDE1A is the key event of p73 and UHRF1 deregulation in thymoquinone-induced acute lymphoblastic leukemia cell apoptosis. Cell Signal 23(1):152–160

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, Horwitz AF (2004) FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6(2):154–161

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Schaller MD (2010) Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci 123(Pt 7):1007–1013

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Parsons JT (2003) Focal adhesion kinase: the first 10 years. J Cell Sci 116(Pt 8):1409–1416

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Grisaru-Granovsky S, Salah Z, Maoz M, Pruss D, Beller U, Bar-Shavit R (2005) Differential expression of protease activated receptor 1 (Par1) and pY397FAK in benign and malignant human ovarian tissue samples. Int J Cancer 113(3):372–378

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Aronsohn MS, Brown HM, Hauptman G, Kornberg LJ (2003) Expression of focal adhesion kinase and phosphorylated focal adhesion kinase in squamous cell carcinoma of the larynx. Laryngoscope 113(11):1944–1948

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Hamadi A, Bouali M, Dontenwill M, Stoeckel H, Takeda K, Ronde P (2005) Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397. J Cell Sci 118(Pt 19):4415–4425

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Brunton VG, Avizienyte E, Fincham VJ, Serrels B, Metcalf CA 3rd, Sawyer TK, Frame MC (2005) Identification of Src-specific phosphorylation site on focal adhesion kinase: dissection of the role of Src SH2 and catalytic functions and their consequences for tumor cell behavior. Cancer Res 65(4):1335–1342

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Deramaudt TB, Dujardin D, Hamadi A, Noulet F, Kolli K, De Mey J, Takeda K, Ronde P (2011) FAK phosphorylation at Tyr-925 regulates cross-talk between focal adhesion turnover and cell protrusion. Mol Biol Cell 22(7):964–975

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Kaneda T, Sonoda Y, Ando K, Suzuki T, Sasaki Y, Oshio T, Tago M, Kasahara T (2008) Mutation of Y925F in focal adhesion kinase (FAK) suppresses melanoma cell proliferation and metastasis. Cancer Lett 270(2):354–361

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Torres MP, Ponnusamy MP, Chakraborty S, Smith LM, Das S, Arafat HA, Batra SK (2010) Effects of thymoquinone in the expression of mucin 4 in pancreatic cancer cells: implications for the development of novel cancer therapies. Mol Cancer Ther 9(5):1419–1431

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Yi T, Cho SG, Yi Z, Luo W, Wang Y, Sethi G, Aggarwal BB, Liu M (2008) Thymoquinone inhibits angiogenesis and prostate tumor growth by suppressing MAPK signaling pathways. The FASEB Journal 22:654.1

    Google Scholar 

  42. 42.

    Koka PS, Mondal D, Schultz M, Abdel-Mageed AB, Agrawal KC (2010) Studies on molecular mechanisms of growth inhibitory effects of thymoquinone against prostate cancer cells: role of reactive oxygen species. Experimental biology and medicine (Maywood) 235(6):751–760

    Article  CAS  Google Scholar 

  43. 43.

    Chen HC, Appeddu PA, Isoda H, Guan JL (1996) Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J Biol Chem 271(42):26329–34

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Golubovskaya VM, Finch R, Cance WG (2005) Direct interaction of the N-terminal domain of focal adhesion kinase with the N-terminal transactivation domain of p53. J Biol Chem 280(26):25008–21

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Singh G, Chan AM (2001) Post-translational modifications of PTEN and their potential therapeutic implications. Curr Cancer Drug Targets 11(5):536–47

    Google Scholar 

  46. 46.

    Gu J, Tamura M, Pankov R, Danen EH, Takino T, Matsumoto K, Yamada KM (1999) Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J Cell Biol 146:389–403

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Giannone G, Rondé P, Gaire M, Haiech J, Takeda K (2002) Calcium oscillations trigger focal adhesion disassembly in human U87 astrocytoma cells. J Biol Chem 277:26364–26371

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Hu B, Jarzynka MJ, Guo P, Imanishi Y, Schlaepfer DD, Cheng SY (2006) Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Res 66(2):775–783

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Lu W, Zhou X, Hong B, Liu J, Yue Z (2004) Suppression of invasion in human U87 glioma cells by adenovirus-mediated co-transfer of TIMP-2 and PTEN gene. Cancer Lett 214(2):205–213

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Yip D, Ahmad A, Karapetis CS, Hawkins CA, Harper PG (1999) Matrix metalloproteinase inhibitors: applications in oncology. Invest New Drugs 17(4):387–399

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Uhm JH, Dooley NP, Villemure JG, Yong VW (1997) Mechanisms of glioma invasion: role of matrix-metalloproteinases. Can J Neurol Sci 24(1):3–15

    PubMed  CAS  Google Scholar 

  52. 52.

    Park JB, Kwak HJ, Lee SH (2008) Role of hyaluronan in glioma invasion. Cell Adh Migr 2(3):202–207

    PubMed  Article  Google Scholar 

  53. 53.

    Schlaepfer DD, Hanks SK, Hunter T, van der Geer P (1994) Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372(6508):786–791

    PubMed  CAS  Google Scholar 

  54. 54.

    Schlaepfer DD, Hunter T (1997) Focal adhesion kinase overexpression enhances ras-dependent integrin signaling to ERK2/mitogen-activated protein kinase through interactions with and activation of c-Src. J Biol Chem 272(20):13189–13195

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Schlaepfer DD, Jones KC, Hunter T (1998) Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK2/mitogen-activated protein kinase: summation of both c-Src- and focal adhesion kinase-initiated tyrosine phosphorylation events. Mol Cell Biol 18(5):2571–2585

    PubMed  CAS  Google Scholar 

Download references


This work was supported in part by grants from the Ligue Contre le Cancer (Comités de la région Alsace) to P. Rondé. K. Kolli-Bouhafs was supported by a doctoral fellowship from the Ministère de l’Enseignement et de la Recherche.

Author information



Corresponding author

Correspondence to Philippe Rondé.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kolli-Bouhafs, K., Boukhari, A., Abusnina, A. et al. Thymoquinone reduces migration and invasion of human glioblastoma cells associated with FAK, MMP-2 and MMP-9 down-regulation. Invest New Drugs 30, 2121–2131 (2012).

Download citation


  • FAK
  • Thymoquinone
  • Invasion
  • Migration
  • MMP
  • Glioblastoma