Investigational New Drugs

, Volume 30, Issue 4, pp 1471–1483 | Cite as

Enhancing the anti-lymphoma potential of 3,4-methylenedioxymethamphetamine (‘ecstasy’) through iterative chemical redesign: mechanisms and pathways to cell death

  • Agata M. Wasik
  • Michael N. Gandy
  • Matthew McIldowie
  • Michelle J. Holder
  • Anita Chamba
  • Anita Challa
  • Katie D. Lewis
  • Stephen P. Young
  • Dagmar Scheel-Toellner
  • Martin J. Dyer
  • Nicholas M. Barnes
  • Matthew J. Piggott
  • John Gordon


While 3,4-methylenedioxymethamphetamine (MDMA/‘ecstasy’) is cytostatic towards lymphoma cells in vitro, the concentrations required militate against its translation directly to a therapeutic in vivo. The possibility of ‘redesigning the designer drug’, separating desired anti-lymphoma activity from unwanted psychoactivity and neurotoxicity, was therefore mooted. From an initial analysis of MDMA analogues synthesized with a modified α-substituent, it was found that incorporating a phenyl group increased potency against sensitive, Bcl-2-deplete, Burkitt’s lymphoma (BL) cells 10-fold relative to MDMA. From this lead, related analogs were synthesized with the ‘best’ compounds (containing 1- and 2-naphthyl and para-biphenyl substituents) some 100-fold more potent than MDMA versus the BL target. When assessed against derived lines from a diversity of B-cell tumors MDMA analogues were seen to impact the broad spectrum of malignancy. Expressing a BCL2 transgene in BL cells afforded only scant protection against the analogues and across the malignancies no significant correlation between constitutive Bcl-2 levels and sensitivity to compounds was observed. Bcl-2-deplete cells displayed hallmarks of apoptotic death in response to the analogues while BCL2 overexpressing equivalents died in a caspase-3-independent manner. Despite lymphoma cells expressing monoamine transporters, their pharmacological blockade failed to reverse the anti-lymphoma actions of the analogues studied. Neither did reactive oxygen species account for ensuing cell death. Enhanced cytotoxic performance did however track with predicted lipophilicity amongst the designed compounds. In conclusion, MDMA analogues have been discovered with enhanced cytotoxic efficacy against lymphoma subtypes amongst which high-level Bcl-2—often a barrier to drug performance for this indication—fails to protect.


Apoptosis Bcl-2 Cytotoxicity Lymphoma MDMA 



Activated B-Cell-like


Burkitt’s lymphoma


Dopamine transporter


Diffuse large B-cell lymphoma


Epstein-Barr virus


Follicular lymphoma


Germinal B-Cell-like




Non-Hodgkin lymphomas


Poly (ADP-ribose) polymerase


Propidium iodide


Post-transplant lymphoproliferative disease


Serotonin transporter


  1. 1.
    Serafeim A, Grafton G, Chamba A, Gregory CD, Blakely RD, Bowery NG, Barnes NM, Gordon J (2002) 5-Hydroxytryptamine drives apoptosis in biopsylike Burkitt lymphoma cells: reversal by selective serotonin reuptake inhibitors. Blood 99:2545–2553CrossRefPubMedGoogle Scholar
  2. 2.
    Meredith EJ, Chamba A, Holder MJ, Barnes NM, Gordon J (2005) Close encounters of the monoamine kind: immune cells betray their nervous disposition. Immunology 115:289–295CrossRefPubMedGoogle Scholar
  3. 3.
    Serafeim A, Holder MJ, Grafton G, Chamba A, Drayson MT, Luong QT, Bunce CM, Gregory CD, Barnes NM, Gordon J (2003) Selective serotonin reuptake inhibitors directly signal for apoptosis in biopsy-like Burkitt lymphoma cells. Blood 101:3212–3219CrossRefPubMedGoogle Scholar
  4. 4.
    Meredith EJ, Holder MJ, Chamba A, Challa A, Drake-Lee A, Bunce CM, Drayson MT, Pilkington G, Blakely RD, Dyer MJ, Barnes NM, Gordon J (2005) The serotonin transporter (SLC6A4) is present in B-cell clones of diverse malignant origin: probing a potential anti-tumor target for psychotropics. FASEB J 19:1187–1189PubMedGoogle Scholar
  5. 5.
    Chamba A, Holder MJ, Jarrett RF, Shield L, Toellner KM, Drayson MT, Barnes NM, Gordon J. SLC6A4 expression and anti-proliferative responses to serotonin transporter ligands chlomipramine and fluoxetine in primary B-cell malignancies. Leuk Res 34:1103–1106Google Scholar
  6. 6.
    Braun U, Shulgin AT, Braun G (1980) Centrally active N-substituted analogs of 3,4-methylenedioxyphenylisopropylamine (3,4-methylenedioxyamphetamine). J Pharm Sci 69:192–195CrossRefPubMedGoogle Scholar
  7. 7.
    Braun U, Shulgin AT, Braun G (1980) Research on the central activity and analgesia of N-substituted analogs of the amphetamine derivative 3,4-methylenedioxyphenylisopropylamine. Arzneimittelforschung 30:825–830PubMedGoogle Scholar
  8. 8.
    Nichols DE, Hoffman AJ, Oberlender RA, Jacob P 3rd, Shulgin AT (1986) Derivatives of 1-(1,3-benzodioxol-5-yl)-2-butanamine: representatives of a novel therapeutic class. J Med Chem 29:2009–2015CrossRefPubMedGoogle Scholar
  9. 9.
    Shulgin A, Shulgin A (1991) Phenethylamines I have known and loved: A chemical love story transform Pr Berkeley, CaliforniaGoogle Scholar
  10. 10.
    Nash JF, Nichols DE (1991) Microdialysis studies on 3,4-methylenedioxyamphetamine and structurally related analogues. Eur J Pharmacol 200:53–58CrossRefPubMedGoogle Scholar
  11. 11.
    Gandy MN, McIldowie M, Lewis K, Wasik AM, Salomonczyk D, Wagg K, Millar ZA, Tindiglia D, Huot P, Johnston T, Thiele S, Nguyen B, Barnes NM, Brotchie JM, Martin-Inverson MT, Nash J, Gordon J, Piggott MJ (2010) Redesigning the designer drug ecstasy: non-psychoactive MDMA analogues exhibiting Burkitt’s lymphoma cytotoxicity. Med Chem Comm 1:287–293CrossRefGoogle Scholar
  12. 12.
    Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV (2005) Virtual computational chemistry laboratory–design and description. J Comput Aided Mol Des 19:453–463CrossRefPubMedGoogle Scholar
  13. 13.
    Steward LJ, Ge J, Bentley KR, Barber PC, Hope AG, Lambert JJ, Peters JA, Blackburn TP, Barnes NM (1995) Evidence that the atypical 5-HT3 receptor ligand, [3H]-BRL46470, labels additional 5-HT3 binding sites compared to [3H]-granisetron. Br J Pharmacol 116:1781–1788PubMedGoogle Scholar
  14. 14.
    Bohm HJ, Banner D, Bendels S, Kansy M, Kuhn B, Muller K, Obst-Sander U, Stahl M (2004) Fluorine in medicinal chemistry. Chembiochem 5:637–643CrossRefPubMedGoogle Scholar
  15. 15.
    Smart BE (2001) Fluorine substutuent effects (on bioactivity). J Fluorine Chem 109:3–11CrossRefGoogle Scholar
  16. 16.
    Cornish-Bowden A, Koshland DE Jr (1975) Diagnostic uses of the Hill (Logit and Nernst) plots. J Mol Biol 95:201–212CrossRefPubMedGoogle Scholar
  17. 17.
    Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, Smulson M (1999) Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem 274:22932–22940CrossRefPubMedGoogle Scholar
  18. 18.
    Cadet JL, Krasnova IN, Jayanthi S, Lyles J (2007) Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms. Neurotox Res 11:183–202CrossRefPubMedGoogle Scholar
  19. 19.
    Beckman JW, Wang Q, Guengerich FP (2008) Kinetic analysis of correct nucleotide insertion by a Y-family DNA polymerase reveals conformational changes both prior to and following phosphodiester bond formation as detected by tryptophan fluorescence. J Biol Chem 283:36711–36723CrossRefPubMedGoogle Scholar
  20. 20.
    Blatt NB, Boitano AE, Lyssiotis CA, Opipari AW Jr, Glick GD (2009) Bz-423 superoxide signals B cell apoptosis via Mcl-1, Bak, and Bax. Biochem Pharmacol 78:966–973CrossRefPubMedGoogle Scholar
  21. 21.
    Tetko IV, Tanchuk VY (2002) Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J Chem Inf Comput Sci 42:1136–1145CrossRefPubMedGoogle Scholar
  22. 22.
    Tetko IV, Bruneau P (2004) Application of ALOGPS to predict 1-octanol/water distribution coefficients, logP, and logD, of AstraZeneca in-house database. J Pharm Sci 93:3103–3110CrossRefPubMedGoogle Scholar
  23. 23.
    Yamamoto B, Zhu W (1998) The effects of methamphetamine on the production of free radicals and oxidative stress. J Pharmacol Exp Ther 287:107–114PubMedGoogle Scholar
  24. 24.
    Davidson C, Gow A, Lee T, Ellinwood E (2001) Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Brain Res Rev 36(1):1–22CrossRefPubMedGoogle Scholar
  25. 25.
    Yamamoto BK, Bankson MG (2005) Amphetamine neurotoxicity: cause and consequence of oxidative stress. Crit Rev Neurobiol 17:87–117PubMedGoogle Scholar
  26. 26.
    Montiel-Duarte C, Ansorena E, Lopez-Zabalza M, Cenarruzabeitia E, Iraburu M (2004) Role of reactive oxygen species, glutathione and NF-kappaB in apoptosis induced by 3,4-methylenedioxymethamphetamine (“ecstasy”) on hepatic stellate cells. Biochem Pharmacol 67:1025–1033CrossRefPubMedGoogle Scholar
  27. 27.
    Monks TJ, Jones DC, Bai F, Lau SS (2004) The role of metabolism in 3,4-(+)-methylenedioxyamphetamine and 3,4-(+)-methylenedioxymethamphetamine (ecstasy) toxicity. Ther Drug Monit 26:132–136CrossRefPubMedGoogle Scholar
  28. 28.
    Milhazes N, Cunha-Oliveira T, Martins P, Garrido J, Oliveira C, Rego AC, Borges F (2006) Synthesis and cytotoxic profile of 3,4-methylenedioxymethamphetamine (“ecstasy”) and its metabolites on undifferentiated PC12 cells: A putative structure-toxicity relationship. Chem Res Toxicol 19:1294–1304CrossRefPubMedGoogle Scholar
  29. 29.
    Keizers PH, de Graaf C, de Kanter FJ, Oostenbrink C, Feenstra KA, Commandeur JN, Vermeulen NP (2005) Metabolic regio- and stereoselectivity of cytochrome P450 2D6 towards 3,4-methylenedioxy-N-alkylamphetamines: in silico predictions and experimental validation. J Med Chem 48:6117–6127CrossRefPubMedGoogle Scholar
  30. 30.
    Capela JP, Carmo H, Remiao F, Bastos ML, Meisel A, Carvalho F (2009) Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol Neurobiol 39:210–271CrossRefPubMedGoogle Scholar
  31. 31.
    Callahan BT, Cord BJ, Yuan J, McCann UD, Ricaurte GA (2001) Inhibitors of Na(+)/H(+) and Na(+)/Ca(2+) exchange potentiate methamphetamine-induced dopamine neurotoxicity: possible role of ionic dysregulation in methamphetamine neurotoxicity. J Neurochem 77:1348–1362CrossRefPubMedGoogle Scholar
  32. 32.
    Verrico CD, Miller GM, Madras BK (2007) MDMA (Ecstasy) and human dopamine, norepinephrine, and serotonin transporters: implications for MDMA-induced neurotoxicity and treatment. Psychopharmacology (Berl) 189:489–503CrossRefGoogle Scholar
  33. 33.
    Simantov R, Tauber M (1997) The abused drug MDMA (Ecstasy) induces programmed death of human serotonergic cells. FASEB J 11(2):141–146PubMedGoogle Scholar
  34. 34.
    Montgomery T, Buon C, Eibauer S, Guiry PJ, Keenan AK, McBean GJ (2007) Comparative potencies of 3,4-methylenedioxymethamphetamine (MDMA) analogues as inhibitors of [3H]noradrenaline and [3H]5-HT transport in mammalian cell lines. Br J Pharmacol 152:1121–1130CrossRefPubMedGoogle Scholar
  35. 35.
    Hayat S, Williams RJ, Rattray M (2006) Serotonin transporter expression is not sufficient to confer cytotoxicity to 3,4-methylenedioxymethamphetamine (MDMA) in vitro. J Psychopharmacol 20:257–263CrossRefPubMedGoogle Scholar
  36. 36.
    Meredith EJ, Holder MJ, Rosen A, Lee AD, Dyer MJ, Barnes NM, Gordon J (2006) Dopamine targets cycling B cells independent of receptors/transporter for oxidative attack: Implications for non-Hodgkin’s lymphoma. Proc Natl Acad Sci USA 103(36):13485–13490CrossRefPubMedGoogle Scholar
  37. 37.
    Biasutto L, Dong LF, Zoratti M, Neuzil J. Mitochondrially targeted anti-cancer agents. Mitochondrion 10:670–681Google Scholar
  38. 38.
    Christman JE, Miller DS, Coward P, Smith LH, Teng NN (1990) Study of the selective cytotoxic properties of cationic, lipophilic mitochondrial-specific compounds in gynecologic malignancies. Gynecol Oncol 39:72–79CrossRefPubMedGoogle Scholar
  39. 39.
    Huszar M, Varga A, Horvath A, Lorand T, Agocs A, Idei M, Mandl J, Vantus T, Keri G. Comparative characterization of experimental and calculated lipophilicity and anti-tumour activity of isochromanone derivatives. Curr Med Chem 17:321–333Google Scholar
  40. 40.
    Adams DJ, da Silva MW, Flowers JL, Kohlhagen G, Pommier Y, Colvin OM, Manikumar G, Wani MC (2006) Camptothecin analogs with enhanced activity against human breast cancer cells. I. Correlation of potency with lipophilicity and persistence in the cleavage complex. Cancer Chemother Pharmacol 57:135–144CrossRefPubMedGoogle Scholar
  41. 41.
    Maliepaard M, de Mol NJ, Janssen LH, van der Neut W, Verboom W, Reinhoudt DN (1992) Role of lipophilicity in the in vitro antitumour activity of a series of new mitosene compounds. Anticancer Drug Des 7(5):415–425PubMedGoogle Scholar
  42. 42.
    Soderberg L, Haag L, Hoglund P, Roth B, Stenberg P, Wahlgren M (2009) The effects of lipophilic substances on the shape of erythrocytes demonstrated by a new in vitro-method. Eur J Pharm Sci 36(4–5):458–464CrossRefPubMedGoogle Scholar
  43. 43.
    Sanderson KL, Butler L, Ingram VM (1997) Aggregates of a beta-amyloid peptide are required to induce calcium currents in neuron-like human teratocarcinoma cells: relation to Alzheimer’s disease. Brain Res 744(1):7–14CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Agata M. Wasik
    • 1
  • Michael N. Gandy
    • 2
  • Matthew McIldowie
    • 2
  • Michelle J. Holder
    • 1
  • Anita Chamba
    • 1
  • Anita Challa
    • 1
  • Katie D. Lewis
    • 2
  • Stephen P. Young
    • 1
  • Dagmar Scheel-Toellner
    • 1
  • Martin J. Dyer
    • 3
  • Nicholas M. Barnes
    • 4
  • Matthew J. Piggott
    • 2
  • John Gordon
    • 1
  1. 1.School of Immunity & Infection, The Medical School, BirminghamUniversity of BirminghamBirminghamUK
  2. 2.School of Biomedical, Biomolecular and Chemical SciencesThe University of Western AustraliaCrawleyAustralia
  3. 3.Medical Research Council Toxicology UnitLeicesterUK
  4. 4.Cellular and Molecular Neuropharmacology Research Group, Clinical and Experimental MedicineThe Medical SchoolBirminghamUK

Personalised recommendations