Skip to main content

Advertisement

Log in

Combination therapy with the albumin-binding prodrug of doxorubicin (INNO-206) and doxorubicin achieves complete remissions and improves tolerability in an ovarian A2780 xenograft model

  • SHORT REPORT
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Graeser R, Esser N, Unger H, Fichtner I, Zhu A et al. INNO-206, the (6-maleimidocaproyl hydrazone derivative of doxorubicin), shows superior antitumor efficacy compared to doxorubicin in different tumor xenograft models and in an orthotopic pancreas carcinoma model. Invest New Drugs 28:14–19

  2. Kratz F, Warnecke A, Scheuermann K, Stockmar C, Schwab J et al (2002) Probing the cysteine-34 position of endogenous serum albumin with thiol-binding doxorubicin derivatives: improved efficacy of an acid-sensitive doxorubicin derivative with specific albumin-binding properties compared to that of the parent compound. J Med Chem 45:5523–5533

    Article  CAS  PubMed  Google Scholar 

  3. Kratz F (2007) DOXO-EMCH (INNO-206): the first albumin-binding prodrug of doxorubicin to enter clinical trials. Expert Opin Investig Drugs 16:855–866

    Article  CAS  PubMed  Google Scholar 

  4. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  5. Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132:171–183

    Article  CAS  PubMed  Google Scholar 

  6. Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373–4384

    CAS  PubMed  Google Scholar 

  7. Kratz F, Ehling G, Kauffmann HM, Unger C (2007) Acute and repeat-dose toxicity studies of the (6-maleimidocaproyl)hydrazone derivative of doxorubicin (DOXO-EMCH), an albumin-binding prodrug of the anticancer agent doxorubicin. Hum Exp Toxicol 26:19–35

    Article  CAS  PubMed  Google Scholar 

  8. Lebrecht D, Geist A, Ketelsen UP, Haberstroh J, Setzer B et al (2007) The 6-maleimidocaproyl hydrazone derivative of doxorubicin (DOXO-EMCH) is superior to free doxorubicin with respect to cardiotoxicity and mitochondrial damage. Int J Cancer 120:927–934

    Article  CAS  PubMed  Google Scholar 

  9. Unger C, Haring B, Medinger M, Drevs J, Steinbild S et al (2007) Phase I and pharmacokinetic study of the (6-maleimidocaproyl)hydrazone derivative of doxorubicin. Clin Cancer Res 13:4858–4866

    Article  CAS  PubMed  Google Scholar 

  10. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  11. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95:4607–4612

    Article  CAS  PubMed  Google Scholar 

  12. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA et al (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55:3752–3756

    CAS  PubMed  Google Scholar 

  13. Fukumura D, Duda DG, Munn LL, Jain RK (2010) Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17:206–225

    Article  CAS  PubMed  Google Scholar 

  14. Fang J, Nakamura H, Maeda H (2010) The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

    Article  PubMed  Google Scholar 

  15. Desai N, Trieu V, Yao Z, Louie L, Ci S et al (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12:1317–1324

    Article  CAS  PubMed  Google Scholar 

  16. Dennis MS, Jin H, Dugger D, Yang R, McFarland L et al (2007) Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res 67:254–261

    Article  CAS  PubMed  Google Scholar 

  17. Wunder A, Stehle G, Sinn H, Schrenk HH, Hoff-Biederbeck D et al (1997) Enhanced albumin uptake by rat tumors. Int J Oncol 11:497–507

    CAS  PubMed  Google Scholar 

  18. Trail PA, Willner D, Lasch SJ, Henderson AJ, Greenfield RS et al (1992) Antigen-specific activity of carcinoma-reactive BR64-doxorubicin conjugates evaluated in vitro and in human tumor xenograft models. Cancer Res 52:5693–5700

    CAS  PubMed  Google Scholar 

  19. Kratz F, Roth T, Fichtner I, Schumacher P, Fiebig HH et al (2000) In vitro and in vivo efficacy of acid-sensitive transferrin and albumin doxorubicin conjugates in a human xenograft panel and in the MDA-MB-435 mamma carcinoma model. J Drug Targeting 8:305–318

    Article  CAS  Google Scholar 

  20. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681

    Article  CAS  PubMed  Google Scholar 

  21. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Kratz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1

(DOC 372 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kratz, F., Fichtner, I. & Graeser, R. Combination therapy with the albumin-binding prodrug of doxorubicin (INNO-206) and doxorubicin achieves complete remissions and improves tolerability in an ovarian A2780 xenograft model. Invest New Drugs 30, 1743–1749 (2012). https://doi.org/10.1007/s10637-011-9686-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-011-9686-5

Keywords

Navigation