Skip to main content
Log in

A simultaneous analysis of the time-course of leukocytes and neutrophils following docetaxel administration using a semi-mechanistic myelosuppression model

Investigational New Drugs Aims and scope Submit manuscript

Summary

Purpose To improve the predictive capacity of a semi-mechanistic myelosuppression model for neutrophils as the model have shown to over-predict the nadir of neutrophils and, secondly, to develop a model describing the time-course of leukocytes and neutrophils simultaneously. Experimental Design The study included 601 cancer patients treated with a 1 h infusion of docetaxel in monotherapy. A total of 3,549 pairwise observations of leukocytes and neutrophils from one treatment cycle were analyzed simultaneously in NONMEM. Results A basic model was developed consisting of a neutrophil and a non-neutrophil model, each with the same structure as the semi-mechanistic myelosuppression model. The leukocytes were modeled as the sum of the predicted neutrophils and non-neutrophils. The model described the time-course of the leukocytes well, but was not able to capture the nadir of the neutrophils. Hence the model was further refined and the included modifications (p < 0.001) in the final model are a sigmoid Emax functions for the drug effect, feedback functions on the cell maturation time in bone-marrow and an optimized number of transit compartments for each of the two cell types. Conclusions A joint semi-mechanistic myelosuppression model describing the time-course of leukocytes and neutrophils following docetaxel administration was developed. The data supported a more complex model compared to the previous model developed by Friberg et al. (2002), and increased the model’s capacity to accurately describe the time-course of neutrophils following docetaxel therapy. The combined model also illustrates the differences between the cell types and allows prediction of neutrophil counts from leukocyte measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Zamboni WC, D’Argenio DZ, Stewart CF, MacVittie T, Delauter BJ, Farese AM, Potter DM, Kubat NM, Tubergen D, Egorin MJ (2001) Pharmacodynamic model of topotecan-induced time course of neutropenia. Clin Cancer Res 7(8):2301–2308

    PubMed  CAS  Google Scholar 

  2. Panetta JC, Kirstein MN, Gajjar AJ, Nair G, Fouladi M, Stewart CF (2003) A mechanistic mathematical model of temozolomide myelosuppression in children with high-grade gliomas. Math Biosci 186(1):29–41

    Article  PubMed  Google Scholar 

  3. Bulitta JB, Zhao P, Arnold RD, Kessler DR, Daifuku R, Pratt J, Luciano G, Hanauske AR, Gelderblom H, Awada A, Jusko WJ (2009) Multiple-pool cell lifespan models for neutropenia to assess the population pharmacodynamics of unbound paclitaxel from two formulations in cancer patients. Cancer Chemother Pharmacol 63(6):1035–1048

    Article  PubMed  CAS  Google Scholar 

  4. Minami H, Sasaki Y, Saijo N, Ohtsu T, Fujii H, Igarashi T, Itoh K (1998) Indirect-response model for the time course of leukopenia with anticancer drugs. Clin Pharmacol Ther 64(5):511–521. doi:10.1016/S0009-9236(98)90134-5

    Article  PubMed  CAS  Google Scholar 

  5. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO (2002) Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol 20(24):4713–4721. doi:10.1200/JCO.2002.02.140

    Article  PubMed  Google Scholar 

  6. Léger F, Loos WJ, Bugat R, Mathijssen RHJ, Goffinet M, Verweij J, Sparreboom A, Chatelut E (2004) Mechanism-based models for topotecan-induced neutropenia. Clin Pharmacol Ther 76(6):567–578

    Article  PubMed  Google Scholar 

  7. Troconiz IF, Garrido MJ, Segura C, Cendros JM, Principe P, Peraire C, Obach R (2006) Phase i dose-finding study and a pharmacokinetic/pharmacodynamic analysis of the neutropenic response of intravenous diflomotecan in patients with advanced malignant tumours. Cancer Chemother Pharmacol 57(6):727–735

    Article  PubMed  CAS  Google Scholar 

  8. Van Kesteren C, Zandvliet AS, Karlsson MO, Mathôt RAA, Punt CJA, Armand JP, Raymond E, Huitema ADR, Dittrich C, Dumez H, Roche HH, Droz JP, Ravic M, Yule SM, Wanders J, Beijnen JH, Fumoleau P, Schellens JHM (2005) Semi-physiological model describing the hematological toxicity of the anti-cancer agent indisulam. Investig New Drugs 23(3):225–234

    Article  CAS  Google Scholar 

  9. Latz JE, Karlsson MO, Rusthoven JJ, Ghosh A, Johnson RD (2006) A semimechanistic-physiologic population pharmacokinetic/pharmacodynamic model for neutropenia following pemetrexed therapy. Cancer Chemother Pharmacol 57(4):412–426

    Article  PubMed  Google Scholar 

  10. Hing J, Perez-Ruixo JJ, Stuyckens K, Soto-Matos A, Lopez-Lazaro L, Zannikos P (2008) Mechanism-based pharmacokinetic/pharmacodynamic meta-analysis of trabectedin (et-743, yondelis) induced neutropenia. Clin Pharmacol Ther 83(1):130–143. doi:10.1038/sj.clpt.6100259

    Article  PubMed  CAS  Google Scholar 

  11. Brain EGC, Rezai K, Lokiec F, Gutierrez M, Urien S (2008) Population pharmacokinetics and exploratory pharmacodynamics of ifosfamide according to continuous or short infusion schedules: an n = 1 randomized study. Br J Clin Pharmacol 65(4):607–610

    Article  PubMed  CAS  Google Scholar 

  12. Kathman SJ, Williams DH, Hodge JP, Dar M (2007) A bayesian population pk-pd model of ispinesib-induced myelosuppression. Clin Pharmacol Ther 81(1):88–94

    Article  PubMed  CAS  Google Scholar 

  13. Kathman SJ, Williams DH, Hodge JP, Dar M (2009) A bayesian population pk-pd model for ispinesib/docetaxel combination-induced myelosuppression. Cancer Chemother Pharmacol 63(3):469–476

    Article  PubMed  CAS  Google Scholar 

  14. Soto E, Staab A, Tillmann C, Trommeshauser D, Fritsch H, Munzert G, Troconiz IF (2010) Semi-mechanistic population pharmacokinetic/pharmacodynamic model for neutropenia following therapy with the Plk-1 inhibitor BI 2536 and its application in clinical development. Cancer Chemother Pharmacol 66(4):785–95

    Google Scholar 

  15. Ng CM, Patnaik A, Beeram M, Lin CC, Takimoto CH (2010) Mechanism-based pharmacokinetic/pharmacodynamic model for troxacitabine-induced neutropenia in cancer patients. Cancer Chemother Pharmacol. doi:10.1007/s00280-010-1393-y

  16. Hansson EK, Wallin JE, Lindman H, Sandström M, Karlsson MO, Friberg LE (2010) Limited inter-occasion variability in relation to inter-individual variability in chemotherapy-induced myelosuppression. Cancer Chemother Pharmacol 65(5):839–848

    Article  PubMed  Google Scholar 

  17. Zandvliet AS, Siegel-Lakhai WS, Beijnen JH, Copalu W, Etienne-Grimaldi MC, Milano G, Schellens JHM, Huitema ADR (2008) Pk/pd model of indisulam and capecitabine: interaction causes excessive myelosuppression. Clin Pharmacol Ther 83(6):829–839. doi:10.1038/sj.clpt.6100344

    Article  PubMed  CAS  Google Scholar 

  18. Zandvliet AS, Schellens JHM, Dittrich C, Wanders J, Beijnen JH, Huitema ADR (2008) Population pharmacokinetic and pharmacodynamic analysis to support treatment optimization of combination chemotherapy with indisulam and carboplatin. Br J Clin Pharmacol 66(4):485–497. doi:10.1111/j.1365-2125.2008.03230.x

    Article  PubMed  CAS  Google Scholar 

  19. Segura C, Bandres E, Troconiz IF, Garcia-Foncillas J, Sayar O, Dios-Vieitez C, Renedo MJ, Garrido MJ (2004) Hematological response of topotecan in tumor-bearing rats: modeling of the time course of different cellular populations. Pharm Res 21(4):567–573

    Article  PubMed  CAS  Google Scholar 

  20. Ozawa K, Minami H, Sato H (2007) Population pharmacokinetic and pharmacodynamic analysis for time courses of docetaxel-induced neutropenia in japanese cancer patients. Cancer Sci 98(12):1985–1992

    Article  PubMed  CAS  Google Scholar 

  21. Sandstrom M, Lindman H, Nygren P, Lidbrink E, Bergh J, Karlsson MO (2005) Model describing the relationship between pharmacokinetics and hematologic toxicity of the epirubicin-docetaxel regimen in breast cancer patients. J Clin Oncol 23(3):413–421

    Article  PubMed  CAS  Google Scholar 

  22. Sandstrom M, Lindman H, Nygren P, Johansson M, Bergh J, Karlsson MO (2006) Population analysis of the pharmacokinetics and the haematological toxicity of the fluorouracil-epirubicin-cyclophosphamide regimen in breast cancer patients. Cancer Chemother Pharmacol 58(2):143–156

    Article  PubMed  CAS  Google Scholar 

  23. Joerger M, Huitema ADR, Richel DJ, Dittrich C, Pavlidis N, Briasoulis E, Vermorken JB, Strocchi E, Martoni A, Sorio R, Sleeboom HP, Izquierdo MA, Jodrell DI, Féty R, De Bruijn E, Hempel G, Karlsson M, Tranchand B, Schrijvers AHGJ, Twelves C, Beijnen JH, Schellens JHM (2007) Population pharmacokinetics and pharmacodynamics of doxorubicin and cyclophosphamide in breast cancer patients: a study by the eortc-pamm-nddg. Clin Pharmacokinet 46(12):1051–1068

    Article  PubMed  CAS  Google Scholar 

  24. Joerger M, Huitema ADR, Richel DJ, Dittrich C, Pavlidis N, Briasoulis E, Vermorken JB, Strocchi E, Martoni A, Sorio R, Sleeboom HP, Izquierdo MA, Jodrell DI, Calvert H, Boddy AV, Hollema H, Féty R, Van Der Vijgh WJF, Hempel G, Chatelut E, Karlsson M, Wilkins J, Tranchand B, Schrijvers AHGJ, Twelves C, Beijnen JH, Schellens JHM (2007) Population pharmacokinetics and pharmacodynamics of paclitaxel and carboplatin in ovarian cancer patients: a study by the european organization for research and treatment of cancer-pharmacology and molecular mechanisms group and new drug development group. Clin Cancer Res 13(21):6410–6418. doi:10.1158/1078-0432.CCR-07-0064

    Article  PubMed  CAS  Google Scholar 

  25. Zandvliet AS, Schellens JHM, Copalu W, Beijnen JH, Huitema ADR (2009) Covariate-based dose individualization of the cytotoxic drug indisulam to reduce the risk of severe myelosuppression. J Pharmacokinet Pharmacodyn 36(1):39–62

    Article  PubMed  CAS  Google Scholar 

  26. Ramon-Lopez A, Nalda-Molina R, Valenzuela B, Perez-Ruixo JJ (2009) Semi-mechanistic model for neutropenia after high dose of chemotherapy in breast cancer patients. Pharm Res 26(8):1952–1962

    Article  PubMed  CAS  Google Scholar 

  27. Latz JE, Schneck KL, Nakagawa K, Miller MA, Takimoto CH (2009) Population pharmacokinetic/pharmacodynamic analyses of pemetrexed and neutropenia: effect of vitamin supplementation and differences between japanese and western patients. Clin Cancer Res 15(1):346–354

    Article  PubMed  CAS  Google Scholar 

  28. Puisset F, Alexandre J, Treluyer JM, Raoul V, Roche H, Goldwasser F, Chatelut E (2007) Clinical pharmacodynamic factors in docetaxel toxicity. Br J Cancer 97(3):290–296

    Article  PubMed  CAS  Google Scholar 

  29. Joerger M, Huitema ADR, Huizing MT, Willemse PHB, De Graeff A, Rosing H, Schellens JHM, Beijnen JH, Vermorken JB (2007) Safety and pharmacology of paclitaxel in patients with impaired liver function: a population pharmacokinetic-pharmacodynamic study. Br J Clin Pharmacol 64(5):622–633

    Article  PubMed  CAS  Google Scholar 

  30. Kloft C, Wallin J, Henningsson A, Chatelut E, Karlsson MO (2006) Population pharmacokinetic-pharmacodynamic model for neutropenia with patient subgroup identification: comparison across anticancer drugs. Clin Cancer Res 12(18):5481–5490

    Article  PubMed  CAS  Google Scholar 

  31. Bruno R, Hille D, Riva A, Vivier N, ten Bokkel Huinnink WW, van Oosterom AT, Kaye SB, Verweij J, Fossella FV, Valero V, Rigas JR, Seidman AD, Chevallier B, Fumoleau P, Burris HA, Ravdin PM, Sheiner LB (1998) Population pharmacokinetics/pharmacodynamics of docetaxel in phase ii studies in patients with cancer. J Clin Oncol 16(1):187–196

    PubMed  CAS  Google Scholar 

  32. Bruno R, Vivier N, Vergniol JC, De Phillips SL, Montay G, Sheiner LB (1996) A population pharmacokinetic model for docetaxel (taxotere): model building and validation. J Pharmacokinet Biopharm 24(2):153–172

    Article  PubMed  CAS  Google Scholar 

  33. Ganong W (2010) Review of medical physiology, 23rd edition. The McGraw Hill companies, U.S ISBN: 0‐07‐144040‐2

  34. Smith CW 2010 Williams hematology 8th edition. The McGraw Hill companies. U.S Book ISBN: 978-0-07-162144-1

  35. Friberg LE, Brindley CJ, Karlsson MO, Devlin AJ (2000) Models of schedule dependent haematological toxicity of 2′-deoxy-2′-methylidenecytidine (dmdc). Eur J Clin Pharmacol 56(8):567–574

    Article  PubMed  CAS  Google Scholar 

  36. Karlsson MO, Port RE, Ratain MJ, Sheiner LB (1995) A population model for the leukopenic effect of etoposide. Clin Pharmacol Ther 57(3):325–334

    Article  PubMed  Google Scholar 

  37. Beal S, Sheiner L, Boeckmann A, Bauer R (1989–2009) Nonmem user’s guides. Elliot City, MD, USA

  38. Lindbom L, Pihlgren P, Jonsson EN (2005) Psn-toolkit–a collection of computer intensive statistical methods for non-linear mixed effect modeling using nonmem. Comput Methods Programs Biomed 79(3):241–257

    Article  PubMed  Google Scholar 

  39. Jonsson EN, Karlsson MO (1999) Xpose–an s-plus based population pharmacokinetic/pharmacodynamic model building aid for nonmem. Comput Methods Programs Biomed 58(1):51–64

    Article  PubMed  CAS  Google Scholar 

  40. Leger F, Loos WJ, Bugat R, Mathijssen RH, Goffinet M, Verweij J, Sparreboom A, Chatelut E (2004) Mechanism-based models for topotecan-induced neutropenia. Clin Pharmacol Ther 76(6):567–578

    Article  PubMed  CAS  Google Scholar 

  41. Karlsson MO, Savic RM (2007) Diagnosing model diagnostics. Clin Pharmacol Ther 82(1):17–20. doi:10.1038/sj.clpt.6100241

    Article  PubMed  CAS  Google Scholar 

  42. van Kesteren C, Zandvliet AS, Karlsson MO, Mathot RA, Punt CJ, Armand JP, Raymond E, Huitema AD, Dittrich C, Dumez H, Roche HH, Droz JP, Ravic M, Yule SM, Wanders J, Beijnen JH, Fumoleau P, Schellens JH (2005) Semi-physiological model describing the hematological toxicity of the anti-cancer agent indisulam. Invest New Drugs 23(3):225–234

    Article  PubMed  CAS  Google Scholar 

  43. Lord BI, Bronchud MH, Owens S, Chang J, Howell A, Souza L, Dexter TM (1989) The kinetics of human granulopoiesis following treatment with granulocyte colony-stimulating factor in vivo. Proc Natl Acad Sci USA 86(23):9499–9503

    Article  PubMed  CAS  Google Scholar 

  44. Schmitz S, Franke H, Brusis J, Wichmann HE (1993) Quantification of the cell kinetic effects of g-csf using a model of human granulopoiesis. Exp Hematol 21(6):755–760

    PubMed  CAS  Google Scholar 

  45. Price TH, Chatta GS, Dale DC (1996) Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood 88(1):335–340

    PubMed  CAS  Google Scholar 

  46. Dancey JT, Deubelbeiss KA, Harker LA, Finch CA (1976) Neutrophil kinetics in man. J Clin Invest 58(3):705–715

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Dr Rene Bruno for providing the data. This research was supported by the Swedish Cancer Society. Lena Friberg received a grant from Knut and Alice Wallenberg foundation, Sweden.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelica Linnea Quartino.

Appendix A

Appendix A

figure afigure afigure a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quartino, A.L., Friberg, L.E. & Karlsson, M.O. A simultaneous analysis of the time-course of leukocytes and neutrophils following docetaxel administration using a semi-mechanistic myelosuppression model. Invest New Drugs 30, 833–845 (2012). https://doi.org/10.1007/s10637-010-9603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9603-3

Keywords

Navigation