Skip to main content

Advertisement

Log in

Anti-invasion, anti-proliferation and anoikis-sensitization activities of lapatinib in nasopharyngeal carcinoma cells

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Nasopharyngeal cancer (NPC) is a highly prevalent and invasive head and neck cancer in Asia. Disease recurrence and distant metastasis account for major NPC deaths. Therefore, more effective therapy is needed. Lapatinib, a dual tyrosine kinase inhibitor (TKI) against both EGFR and HER-2, has been known to exert potent antitumor activity against several cancer models. Given that both EGFR and HER-2 are co-expressed in NPC, we hypothesized that dual targeting of EGFR and HER-2 by this small molecule EGFR/HER-2 TKI would elicit anti-tumor activity in NPC. Using in vitro models of NPC, we demonstrated that lapatinib was able to efficiently inhibit the phosphorylation of both EGFR and HER-2. This was accompanied by significant growth inhibition of NPC cells (with maximal growth inhibition >90%). For the most lapatinib-sensitive cell line (HK1-LMP1, with IC50 ∼ 600 nM), which harbored the highest levels of both EGFR and HER-2, inhibition of cell growth was associated G0/G1 cell cycle arrest, marked PARP cleavage, caspase-3 cleavage, as well as significant downregulation of several important survival proteins (e.g. survivin, Mcl-1 and cyclin D1). NPC cells are intrinsically invasive. We found that lapatinib was able to inhibit cellular invasion of both HK1-LMP1 and HONE-1 cells. Furthermore, our data demonstrated for the first time that lapatinib harbored potent anoikis-sensitization activity (i.e. sensitizing cancer cells to detachment-induced apoptosis) in human cancer cells overexpressing both EGFR and HER-2 (HK1-LMP1 and HK1). Taken together, our findings suggest that lapatinib is a promising anti-cancer agent for NPC with anti-invasion and anoikis-sensitization activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NPC:

Nasopharyngeal carcinoma

LMP1:

Latent membrane protein 1

EGFR or ErbB1:

Epidermal Growth Factor Receptor

HER-2 or ErbB2:

Human Epidermal growth factor Receptor 2

FISH:

Fluorescence in situ hybridization

TKI:

Tyrosine kinase inhibitor

PARP:

Poly (ADP-ribose) polymerase

Mcl-1:

Induced myeloid leukemia cell differentiation protein

References

  1. Anderson KE, Mack TM, Silverman DT (2006) Cancer of the pancreas. In: Schottenfeld D, Fraumeni JF Jr (eds) Cancer epidemiology and prevention, 3rd edn. Oxford University Press, New York, pp 721–762

    Chapter  Google Scholar 

  2. Chan AT, Teo PM, Johnson PJ (2002) Nasopharyngeal carcinoma. Ann Oncol 13(7):1007–1015

    Article  PubMed  CAS  Google Scholar 

  3. Teo PM, Kwan WH, Lee WY et al (1996) Prognosticators determining survival subsequent to distant metastasis from nasopharyngeal carcinoma. Cancer 77(12):2423–2431

    Article  PubMed  CAS  Google Scholar 

  4. Lui VW, Wong EY, Ho Y et al (2009) STAT3 activation contributes directly to Epstein-Barr virus-mediated invasiveness of nasopharyngeal cancer cells in vitro. Int J Cancer 125(8):1884–1893

    Article  PubMed  CAS  Google Scholar 

  5. Ma BB, Lui VW, Poon FF et al. (2009) Preclinical activity of gefitinib in non-keratinizing nasopharyngeal carcinoma cell lines and biomarkers of response. Invest New Drugs.

  6. Ma BB, Poon TC, To KF et al (2003) Prognostic significance of tumor angiogenesis, Ki 67, p53 oncoprotein, epidermal growth factor receptor and HER2 receptor protein expression in undifferentiated nasopharyngeal carcinoma–a prospective study. Head Neck 25(10):864–872

    Article  PubMed  Google Scholar 

  7. Leong JL, Loh KS, Putti TC et al (2004) Epidermal growth factor receptor in undifferentiated carcinoma of the nasopharynx. Laryngoscope 114(1):153–157

    Article  PubMed  CAS  Google Scholar 

  8. Chua DT, Nicholls JM, Sham JS et al (2004) Prognostic value of epidermal growth factor receptor expression in patients with advanced stage nasopharyngeal carcinoma treated with induction chemotherapy and radiotherapy. Int J Radiat Oncol Biol Phys 59(1):11–20

    Article  PubMed  CAS  Google Scholar 

  9. Taheri-Kadkhoda Z, Magnusson B, Svensson M et al (2009) Expression modes and clinical manifestations of latent membrane protein 1, Ki-67, cyclin-B1, and epidermal growth factor receptor in nonendemic nasopharyngeal carcinoma. Head Neck 31(4):482–492

    Article  PubMed  Google Scholar 

  10. Lui VW, Yau DM, Wong EY et al (2009) Cucurbitacin I elicits anoikis sensitization, inhibits cellular invasion and in vivo tumor formation ability of nasopharyngeal carcinoma cells. Carcinogenesis 30(12):2085–2094

    Article  PubMed  CAS  Google Scholar 

  11. Hu LF, Chen F, Zhen QF et al (1995) Differences in the growth pattern and clinical course of EBV-LMP1 expressing and non-expressing nasopharyngeal carcinomas. Eur J Cancer 31A(5):658–660

    Article  PubMed  CAS  Google Scholar 

  12. Gondhowiardjo S (2000) Epstein-Barr virus latent membrane protein 1 (EBV-LMP1) and tumor proliferation rate as predictive factors of nasopharyngeal cancer (NPC) radiation response. Gan To Kagaku Ryoho 27(Suppl 2):323–331

    PubMed  Google Scholar 

  13. Horikawa T, Sheen TS, Takeshita H et al (2001) Induction of c-Met proto-oncogene by Epstein-Barr virus latent membrane protein-1 and the correlation with cervical lymph node metastasis of nasopharyngeal carcinoma. Am J Pathol 159(1):27–33

    Article  PubMed  CAS  Google Scholar 

  14. Tao Y, Song X, Deng X et al (2005) Nuclear accumulation of epidermal growth factor receptor and acceleration of G1/S stage by Epstein-Barr-encoded oncoprotein latent membrane protein 1. Exp Cell Res 303(2):240–251

    Article  PubMed  CAS  Google Scholar 

  15. Miller WE, Earp HS, Raab-Traub N (1995) The Epstein-Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor. J Virol 69(7):4390–4398

    PubMed  CAS  Google Scholar 

  16. Zheng X, Hu L, Chen F et al (1994) Expression of Ki67 antigen, epidermal growth factor receptor and Epstein-Barr virus-encoded latent membrane protein (LMP1) in nasopharyngeal carcinoma. Eur J Cancer B Oral Oncol 30B(5):290–295

    Article  PubMed  CAS  Google Scholar 

  17. Yan J, Fang Y, Jiao Y (2001) Significance of her2 oncogene expression in primary nasopharyngeal carcinoma. Zhonghua Yi Xue Za Zhi 81(15):904–906

    PubMed  CAS  Google Scholar 

  18. Jin O, Chen S, Li G et al (1997) Expression of CerbB-2 and EGFR mRNA in human nasopharyngeal carcinomas and pericarcinomatous tissues. Hunan Yi Ke Da Xue Xue Bao 22(6):487–490

    PubMed  CAS  Google Scholar 

  19. Bar-Sela G, Kuten A, Ben-Eliezer S et al (2003) Expression of HER2 and C-KIT in nasopharyngeal carcinoma: implications for a new therapeutic approach. Mod Pathol 16(10):1035–1040

    Article  PubMed  CAS  Google Scholar 

  20. Roychowdhury DF, Tseng A Jr, Fu KK et al (1996) New prognostic factors in nasopharyngeal carcinoma. Tumor angiogenesis and C-erbB2 expression. Cancer 77(8):1419–1426

    Article  PubMed  CAS  Google Scholar 

  21. Yazici H, Altun M, Alatli C et al (2000) c-erbB-2 gene amplification in nasopharyngeal carcinoma. Cancer Invest 18(1):6–10

    Article  PubMed  CAS  Google Scholar 

  22. Cavalot A, Martone T, Roggero N et al (2007) Prognostic impact of HER-2/neu expression on squamous head and neck carcinomas. Head Neck 29(7):655–664

    Article  PubMed  Google Scholar 

  23. Cappuzzo F, Magrini E, Ceresoli GL et al (2004) Akt phosphorylation and gefitinib efficacy in patients with advanced non-small-cell lung cancer. J Natl Cancer Inst 96(15):1133–1141

    Article  PubMed  CAS  Google Scholar 

  24. Paez JG, Janne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500

    Article  PubMed  CAS  Google Scholar 

  25. Kim HP, Han SW, Kim SH et al (2008) Combined lapatinib and cetuximab enhance cytotoxicity against gefitinib-resistant lung cancer cells. Mol Cancer Ther 7(3):607–615

    Article  PubMed  CAS  Google Scholar 

  26. Janne PA (2008) Challenges of detecting EGFR T790M in gefitinib/erlotinib-resistant tumours. Lung Cancer 60(Suppl 2):S3–S9

    Article  PubMed  Google Scholar 

  27. Zhou W, Ercan D, Chen L et al (2009) Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 462(7276):1070–1074

    Article  PubMed  CAS  Google Scholar 

  28. Guo A, Villen J, Kornhauser J et al (2008) Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad Sci U S A 105(2):692–697

    Article  PubMed  CAS  Google Scholar 

  29. Ma B, Hui EP, King A et al (2008) A phase II study of patients with metastatic or locoregionally recurrent nasopharyngeal carcinoma and evaluation of plasma Epstein-Barr virus DNA as a biomarker of efficacy. Cancer Chemother Pharmacol 62(1):59–64

    Article  PubMed  CAS  Google Scholar 

  30. Chua DT, Wei WI, Wong MP et al (2008) Phase II study of gefitinib for the treatment of recurrent and metastatic nasopharyngeal carcinoma. Head Neck 30(7):863–867

    Article  PubMed  Google Scholar 

  31. Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316(5827):1039–1043

    Article  PubMed  CAS  Google Scholar 

  32. Li G, Wang Y, Huang K et al (2005) The experimental study on the radioimmunotherapy of the nasopharyngeal carcinoma overexpressing HER2/neu in nude mice model with intratumoral injection of 188Re-herceptin. Nucl Med Biol 32(1):59–65

    Article  PubMed  Google Scholar 

  33. Glaser R, Zhang HY, Yao KT et al (1989) Two epithelial tumor cell lines (HNE-1 and HONE-1) latently infected with Epstein-Barr virus that were derived from nasopharyngeal carcinomas. Proc Natl Acad Sci U S A 86(23):9524–9528

    Article  PubMed  CAS  Google Scholar 

  34. Sizhong Z, Xiukung G, Yi Z (1983) Cytogenetic studies on an epithelial cell line derived from poorly differentiated nasopharyngeal carcinoma. Int J Cancer 31(5):587–590

    Article  PubMed  CAS  Google Scholar 

  35. Huang DP, Ho JH, Poon YF et al (1980) Establishment of a cell line (NPC/HK1) from a differentiated squamous carcinoma of the nasopharynx. Int J Cancer 26(2):127–132

    Article  PubMed  CAS  Google Scholar 

  36. Cheung ST, Huang DP, Hui AB et al (1999) Nasopharyngeal carcinoma cell line (C666-1) consistently harbouring Epstein-Barr virus. Int J Cancer 83(1):121–126

    Article  PubMed  CAS  Google Scholar 

  37. Lo AK, Lo KW, Tsao SW et al (2006) Epstein-Barr virus infection alters cellular signal cascades in human nasopharyngeal epithelial cells. Neoplasia 8(3):173–180

    Article  PubMed  CAS  Google Scholar 

  38. Lui VW, Boehm AL, Koppikar P et al (2007) Antiproliferative mechanisms of a transcription factor decoy targeting signal transducer and activator of transcription (STAT) 3: the role of STAT1. Mol Pharmacol 71(5):1435–1443

    Article  PubMed  CAS  Google Scholar 

  39. Lui VW, Thomas SM, Zhang Q et al (2003) Mitogenic effects of gastrin-releasing peptide in head and neck squamous cancer cells are mediated by activation of the epidermal growth factor receptor. Oncogene 22(40):6183–6193

    Article  PubMed  CAS  Google Scholar 

  40. Yan J, Fang Y, Huang BJ et al (2002) Absence of evidence for HER2 amplification in nasopharyngeal carcinoma. Cancer Genet Cytogenet 132(2):116–119

    Article  PubMed  CAS  Google Scholar 

  41. Rusnak DW, Alligood KJ, Mullin RJ et al (2007) Assessment of epidermal growth factor receptor (EGFR, ErbB1) and HER2 (ErbB2) protein expression levels and response to lapatinib (Tykerb, GW572016) in an expanded panel of human normal and tumour cell lines. Cell Prolif 40(4):580–594

    Article  PubMed  CAS  Google Scholar 

  42. Konecny GE, Venkatesan N, Yang G et al (2008) Activity of lapatinib a novel HER2 and EGFR dual kinase inhibitor in human endometrial cancer cells. Br J Cancer 98(6):1076–1084

    Article  PubMed  CAS  Google Scholar 

  43. Rusnak DW, Lackey K, Affleck K et al (2001) The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 1(2):85–94

    PubMed  CAS  Google Scholar 

  44. Konecny GE, Pegram MD, Venkatesan N et al (2006) Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res 66(3):1630–1639

    Article  PubMed  CAS  Google Scholar 

  45. Kim JW, Kim HP, Im SA et al (2008) The growth inhibitory effect of lapatinib, a dual inhibitor of EGFR and HER2 tyrosine kinase, in gastric cancer cell lines. Cancer Lett 272(2):296–306

    Article  PubMed  CAS  Google Scholar 

  46. D'Alessio A, De Luca A, Maiello MR et al. (2009) Effects of the combined blockade of EGFR and ErbB-2 on signal transduction and regulation of cell cycle regulatory proteins in breast cancer cells. Breast Cancer Res Treat.

  47. Xia W, Gerard CM, Liu L et al (2005) Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene 24(41):6213–6221

    Article  PubMed  CAS  Google Scholar 

  48. Kedrin D, Wyckoff J, Boimel PJ et al (2009) ERBB1 and ERBB2 have distinct functions in tumor cell invasion and intravasation. Clin Cancer Res 15(11):3733–3739

    Article  PubMed  CAS  Google Scholar 

  49. Frisch SM, Screaton RA (2001) Anoikis mechanisms. Curr Opin Cell Biol 13(5):555–562

    Article  PubMed  CAS  Google Scholar 

  50. Chan AT (2005) Head and neck cancer: treatment of nasopharyngeal cancer. Ann Oncol 16(Suppl 2):ii265–ii268

    Article  PubMed  Google Scholar 

  51. Kaufman B, Trudeau M, Awada A et al (2009) Lapatinib monotherapy in patients with HER2-overexpressing relapsed or refractory inflammatory breast cancer: final results and survival of the expanded HER2+ cohort in EGF103009, a phase II study. Lancet Oncol 10(6):581–588

    Article  PubMed  CAS  Google Scholar 

  52. Toi M, Iwata H, Fujiwara Y et al (2009) Lapatinib monotherapy in patients with relapsed, advanced, or metastatic breast cancer: efficacy, safety, and biomarker results from Japanese patients phase II studies. Br J Cancer 101(10):1676–1682

    Article  PubMed  CAS  Google Scholar 

  53. Johnston S, Trudeau M, Kaufman B et al (2008) Phase II study of predictive biomarker profiles for response targeting human epidermal growth factor receptor 2 (HER-2) in advanced inflammatory breast cancer with lapatinib monotherapy. J Clin Oncol 26(7):1066–1072

    Article  PubMed  CAS  Google Scholar 

  54. Sridhar SS, Hotte SJ, Chin JL et al. (2009) A Multicenter Phase II Clinical Trial of Lapatinib (GW572016) in Hormonally Untreated Advanced Prostate Cancer. Am J Clin Oncol.

  55. Burris HA 3rd, Hurwitz HI, Dees EC et al (2005) Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol 23(23):5305–5313

    Article  PubMed  CAS  Google Scholar 

  56. Spector NL, Xia W, Burris H 3rd et al (2005) Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J Clin Oncol 23(11):2502–2512

    Article  PubMed  CAS  Google Scholar 

  57. Zhang D, Pal A, Bornmann WG et al (2008) Activity of lapatinib is independent of EGFR expression level in HER2-overexpressing breast cancer cells. Mol Cancer Ther 7(7):1846–1850

    Article  PubMed  CAS  Google Scholar 

  58. Xia W, Bisi J, Strum J et al (2006) Regulation of survivin by ErbB2 signaling: therapeutic implications for ErbB2-overexpressing breast cancers. Cancer Res 66(3):1640–1647

    Article  PubMed  CAS  Google Scholar 

  59. Xiang Y, Yao H, Wang S et al (2006) Prognostic value of Survivin and Livin in nasopharyngeal carcinoma. Laryngoscope 116(1):126–130

    Article  PubMed  CAS  Google Scholar 

  60. Hegde PS, Rusnak D, Bertiaux M et al (2007) Delineation of molecular mechanisms of sensitivity to lapatinib in breast cancer cell lines using global gene expression profiles. Mol Cancer Ther 6(5):1629–1640

    Article  PubMed  CAS  Google Scholar 

  61. Ryan Q, Ibrahim A, Cohen MH et al (2008) FDA drug approval summary: lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2. Oncologist 13(10):1114–1119

    Article  PubMed  CAS  Google Scholar 

  62. Higa GM, Abraham J (2007) Lapatinib in the treatment of breast cancer. Expert Rev Anticancer Ther 7(9):1183–1192

    Article  PubMed  CAS  Google Scholar 

  63. Gomez HL, Doval DC, Chavez MA et al (2008) Efficacy and safety of lapatinib as first-line therapy for ErbB2-amplified locally advanced or metastatic breast cancer. J Clin Oncol 26(18):2999–3005

    Article  PubMed  CAS  Google Scholar 

  64. Azim H, Azim HA Jr, Escudier B (2009) Trastuzumab versus lapatinib: the cardiac side of the story. Cancer Treat Rev 35(7):633–638

    Article  PubMed  CAS  Google Scholar 

  65. Cathomas R, von Moos R (2009) Severe drug-induced thrombocytopenia after treatment with trastuzumab but not with lapatinib. Ann Oncol 20(9):1606–1607

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a research grant from GlaxoSmithKline, UK (to T. Mok).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian Wai Yan Lui.

Additional information

Vivian Wai Yan Lui and Cecilia Pik Yuk Lau contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Lapatinib inhibited cellular invasion of NPC cells through the Matrigel Invasion chambers. Invaded cells were fixed and stained with Toludine Blue O. Photographs were taken at 200 × magnification under a light microscope. (JPEG 50 kb)

Supplementary Figure 2

High endogenous levels of total and phosphorylated EGFR and HER-2 in HK1 and HK1-LMP1 cells. Total and phosphorylated EGFR were detected in HK1 and HK1-LMP1 cells by Western blotting. Total HER-2 and phosphorylated HER-2 were detected by Western blotting and immunoprecipitation, respectively. Similar results were obtained in three independent experiments. (JPEG 28 kb)

Supplementary Figure 3

Lapatinib induced anoikis in HK1 cells. Lapatinib treatment (600 nM for 48 hrs) markedly reduced the size of multi-cellular spheroids of HK1 cells, which was associated with significant growth inhibition and marked increase in apoptosis activity in detached state (as quantified by Cell Death ELISA assay). Photographs were taken at 100× magnification under a light microscope. Similar results were obtained in three independent experiments. (JPEG 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lui, V.W.Y., Lau, C.P.Y., Ho, K. et al. Anti-invasion, anti-proliferation and anoikis-sensitization activities of lapatinib in nasopharyngeal carcinoma cells. Invest New Drugs 29, 1241–1252 (2011). https://doi.org/10.1007/s10637-010-9470-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9470-y

Keywords

Navigation