Skip to main content
Log in

Pharmacokinetics and derivation of an anticancer dosing regimen for PAC-1, a preferential small molecule activator of procaspase-3, in healthy dogs

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

PAC-1 is a preferential small molecule activator of procaspase-3 and has potential to become a novel and effective anticancer agent. The rational development of PAC-1 for translational oncologic applications would be advanced by coupling relevant in vitro cytotoxicity studies with pharmacokinetic investigations conducted in large mammalian models possessing similar metabolism and physiology as people. In the present study, we investigated whether concentrations and exposure durations of PAC-1 that induce cytotoxicity in lymphoma cell lines in vitro can be achievable in healthy dogs through a constant rate infusion (CRI) intravenous delivery strategy. Time- and dose-dependent procaspase-3 activation by PAC-1 with subsequent cytotoxicity was determined in a panel of B-cell lymphoma cells in vitro. The pharmacokinetics of PAC-1 administered orally or intravenously was studied in 6 healthy dogs using a crossover design. The feasibility of maintaining steady state plasma concentration of PAC-1 for 24 or 48 h that paralleled in vitro cytotoxic concentrations was investigated in 4 healthy dogs. In vitro, PAC-1 induced apoptosis in lymphoma cell lines in a time- and dose-dependent manner. The oral bioavailability of PAC-1 was relatively low and highly variable (17.8 ± 9.5%). The achievement and maintenance of predicted PAC-1 cytotoxic concentrations in normal dogs was safely attained via intravenous CRI lasting for 24 or 48 h in duration. Using the dog as a large mammalian model, PAC-1 can be safely administered as an intravenous CRI while achieving predicted in vitro cytotoxic concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27:6194–6206

    Article  PubMed  CAS  Google Scholar 

  2. Mori C, Nakamura N, Kimura S, Irie H, Takigawa T et al (1995) Programmed cell death in the interdigital tissue of the fetal mouse limb is apoptosis with DNA fragmentation. Anat Rec 242:103–110

    Article  PubMed  CAS  Google Scholar 

  3. Takanosu M, Amasaki H, Iwama Y, Ogawa M, Hibi S et al (2002) Epithelial cell proliferation and apoptosis in the developing murine palatal rugae. Anat Histol Embryol 31:9–14

    Article  PubMed  CAS  Google Scholar 

  4. Arnold R, Brenner D, Becker M, Frey CR, Krammer PH (2006) How T lymphocytes switch between life and death. Eur J Immunol 36:1654–1658

    Article  PubMed  CAS  Google Scholar 

  5. Hildeman DA, Zhu Y, Mitchell TC, Kappler J, Marrack P (2002) Molecular mechanisms of activated T cell death in vivo. Curr Opin Immunol 14:354–359

    Article  PubMed  CAS  Google Scholar 

  6. Medema JP, Borst J (1999) T cell signaling: a decision of life and death. Hum Immunol 60:403–411

    Article  PubMed  CAS  Google Scholar 

  7. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  8. Downward J (2004) PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol 15:177–182

    Article  PubMed  CAS  Google Scholar 

  9. Gurumurthy S, Vasudevan KM, Rangnekar VM (2001) Regulation of apoptosis in prostate cancer. Cancer Metastasis Rev 20:225–243

    Article  PubMed  CAS  Google Scholar 

  10. Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284:21777–21781

    Article  PubMed  CAS  Google Scholar 

  11. Fink D, Schlagbauer-Wadl H, Selzer E, Lucas T, Wolff K et al (2001) Elevated procaspase levels in human melanoma. Melanoma Res 11:385–393

    Article  PubMed  CAS  Google Scholar 

  12. Izban KF, Wrone-Smith T, Hsi ED, Schnitzer B, Quevedo ME et al (1999) Characterization of the interleukin-1beta-converting enzyme/ced-3-family protease, caspase-3/CPP32, in Hodgkin's disease: lack of caspase-3 expression in nodular lymphocyte predominance Hodgkin's disease. Am J Pathol 154:1439–1447

    Article  PubMed  CAS  Google Scholar 

  13. Krepela E, Prochazka J, Liul X, Fiala P, Kinkor Z (2004) Increased expression of Apaf-1 and procaspase-3 and the functionality of intrinsic apoptosis apparatus in non-small cell lung carcinoma. Biol Chem 385:153–168

    Article  PubMed  CAS  Google Scholar 

  14. Nakagawara A, Nakamura Y, Ikeda H, Hiwasa T, Kuida K et al (1997) High levels of expression and nuclear localization of interleukin-1 beta converting enzyme (ICE) and CPP32 in favorable human neuroblastomas. Cancer Res 57:4578–4584

    PubMed  CAS  Google Scholar 

  15. O'Donovan N, Crown J, Stunell H, Hill AD, McDermott E et al (2003) Caspase 3 in breast cancer. Clin Cancer Res 9:738–742

    PubMed  Google Scholar 

  16. Putt KS, Chen GW, Pearson JM, Sandhorst JS, Hoagland MS et al (2006) Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. Nat Chem Biol 2:543–550

    Article  PubMed  CAS  Google Scholar 

  17. Peterson QP, Goode DR, West DC, Ramsey KN, Lee JJ et al (2009) PAC-1 activates procaspase-3 in vitro through relief of zinc-mediated inhibition. J Mol Biol 388:144–158

    Article  PubMed  CAS  Google Scholar 

  18. Peterson QP, Hsu DC, Goode DR, Novotny CJ, Totten RK et al (2009) Procaspase-3 activation as an anti-cancer strategy: structure-activity relationship of procaspase-activating compound 1 (PAC-1) and its cellular co-localization with caspase-3. J Med Chem 52:5721–5731

    Article  PubMed  CAS  Google Scholar 

  19. Dukers DF, Oudejans JJ, Vos W, ten Berge RL, Meijer CJ (2002) Apoptosis in B-cell lymphomas and reactive lymphoid tissues always involves activation of caspase 3 as determined by a new in situ detection method. J Pathol 196:307–315

    Article  PubMed  CAS  Google Scholar 

  20. Fisher RI, Gaynor ER, Dahlberg S, Oken MM, Grogan TM et al (1993) Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin's lymphoma. N Engl J Med 328:1002–1006

    Article  PubMed  CAS  Google Scholar 

  21. Muris JJ, Cillessen SA, Vos W, van Houdt IS, Kummer JA et al (2005) Immunohistochemical profiling of caspase signaling pathways predicts clinical response to chemotherapy in primary nodal diffuse large B-cell lymphomas. Blood 105:2916–2923

    Article  PubMed  CAS  Google Scholar 

  22. Gibaldi M, Perrier D (1982) Pharmacokinetics. 2nd edn. Dekker, New York, pp 409–447

    Google Scholar 

  23. Gibaldi M, Perrier D (1975) Pharmacokinetics. Dekker, New York, p 281

    Google Scholar 

  24. Martinez MN (1998) Use of pharmacokinetics in veterinary medicine. Article. II: Volume, clearance, and half-life. J Am Vet Med Assoc 213:1122–1127

    PubMed  CAS  Google Scholar 

  25. Martinez MN (1998) Noncompartmental methods of drug characterization: statistical moment theory. J Am Vet Med Assoc 213:974–980

    PubMed  CAS  Google Scholar 

  26. Shargel L, Yu ABC (1993) Applied biopharmaceuticals and pharmacokinetics, 3rd edn. Appleton and Lange Publishers, Norwalk

    Google Scholar 

  27. Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS et al (1999) Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. Embo J 18:5242–5251

    Article  PubMed  CAS  Google Scholar 

  28. Hay BA, Wassarman DA, Rubin GM (1995) Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83:1253–1262

    Article  PubMed  CAS  Google Scholar 

  29. Kasof GM, Gomes BC (2001) Livin, a novel inhibitor of apoptosis protein family member. J Biol Chem 276:3238–3246

    Article  PubMed  CAS  Google Scholar 

  30. Lin JH, Deng G, Huang Q, Morser J (2000) KIAP, a novel member of the inhibitor of apoptosis protein family. Biochem Biophys Res Commun 279:820–831

    Article  PubMed  CAS  Google Scholar 

  31. Suzuki Y, Nakabayashi Y, Nakata K, Reed JC, Takahashi R (2001) X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and −7 in distinct modes. J Biol Chem 276:27058–27063

    Article  PubMed  CAS  Google Scholar 

  32. Khanna C, Lindblad-Toh K, Vail D, London C, Bergman P et al (2006) The dog as a cancer model. Nat Biotechnol 24:1065–1066

    Article  PubMed  CAS  Google Scholar 

  33. Hahn KA, Bravo L, Adams WH, Frazier DL (1994) Naturally occurring tumors in dogs as comparative models for cancer therapy research. In Vivo 8:133–143

    PubMed  CAS  Google Scholar 

  34. Vail DM, MacEwen EG (2000) Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest 18:781–792

    Article  PubMed  CAS  Google Scholar 

  35. Coiffier B (2006) Treatment of non-Hodgkin's lymphoma: a look over the past decade. Clin Lymphoma Myeloma 7(Suppl 1):S7–13

    Article  PubMed  CAS  Google Scholar 

  36. Rassnick KM, McEntee MC, Erb HN, Burke BP, Balkman CE et al (2007) Comparison of 3 protocols for treatment after induction of remission in dogs with lymphoma. J Vet Intern Med 21:1364–1373

    Article  PubMed  Google Scholar 

  37. Paoloni M, Khanna C (2008) Translation of new cancer treatments from pet dogs to humans. Nat Rev Cancer 8:147–156

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Office of the Vice President for Technology and Economic Development at the University of Illinois, and the National Institutes of Health (R01-CA120439, PJH). QPP was supported by a Chemistry-Biology Interface Training Grant from the NIH (Ruth L. Kirschstein National Research Service Award 1 T32 GM070421) and by a predoctoral fellowship from the Medicinal Chemistry Division of the American Chemical Society. DCW was partially supported by Ruth L. Kirschstein National Research Service Award F31-CA130138-01 S1. We thank Mrs. Holly Pondenis and Mr. Ian Sprandel for helping with in vitro laboratory experiments, and Mrs. Rebecca Kamerer and Nancy George for aiding canine pharmacokinetic experiments. The views presented in this article do not necessarily reflect those of the U.S. Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul J. Hergenrother or Timothy M. Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucas, P.W., Schmit, J.M., Peterson, Q.P. et al. Pharmacokinetics and derivation of an anticancer dosing regimen for PAC-1, a preferential small molecule activator of procaspase-3, in healthy dogs. Invest New Drugs 29, 901–911 (2011). https://doi.org/10.1007/s10637-010-9445-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9445-z

Keywords

Navigation