Investigational New Drugs

, Volume 29, Issue 5, pp 873–882 | Cite as

Intercalative pyrimido[4′,5′:4,5]thieno(2,3-b)quinolines induce apoptosis in leukemic cells: a comparative study of methoxy and morpholino substitution

  • M. S. Shahabuddin
  • Mridula Nambiar
  • Gopal M. Advirao
  • Sathees C. Raghavan


DNA intercalating molecules are promising anticancer agents. Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and affect major physiological functions. In the present study, we have characterized two molecules with the same chemical backbone but different side chains, namely 8-methoxy pyrimido[4′,5′:4,5]thieno (2,3-b)quinoline-4(3H)-one (MPTQ) and 4-morpholino pyrimido[4′,5′:4,5]thieno(2,3-b)quinoline (morpho-PTQ) at the 8th and 4th position, respectively. Although both MPTQ and morpho-PTQ show similar biophysical properties with high DNA affinity, here we show that they differ in their biological activities. We find that MPTQ is many fold more potent than morpho-PTQ and is cytotoxic against different leukemic cell lines. IC50 value of methoxy PTQ was estimated between 2–15 µM among the leukemic cells studied, while it was more than 200 µM when morpho-PTQ was used. Cell cycle analysis shows an increase in sub-G1 phase, without any particular cell cycle arrest. Annexin V staining in conjunction with comet assay and DNA fragmentation suggest that MPTQ induces cytotoxicity by activating apoptosis. Thus the observed low IC50 value of MPTQ makes it a promising cancer chemotherapeutic agent.


Chemotherapy Double-strand breaks Cytotoxicity DNA damage Anticancer drug 


  1. 1.
    Mazzitelli CL et al (2007) Screening of threading bis-intercalators binding to duplex DNA by electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectrom 18(2):311–321PubMedCrossRefGoogle Scholar
  2. 2.
    Portugal J (2009) Evaluation of molecular descriptors for antitumor drugs with respect to noncovalent binding to DNA and antiproliferative activity. BMC Pharmacol 9:11PubMedCrossRefGoogle Scholar
  3. 3.
    Minotti G et al (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56(2):185–229PubMedCrossRefGoogle Scholar
  4. 4.
    Strekowski L, Wilson B (2007) Noncovalent interactions with DNA: an overview. Mutat Res 623(1–2):3–13PubMedGoogle Scholar
  5. 5.
    Chaires JB (2006) A thermodynamic signature for drug-DNA binding mode. Arch Biochem Biophys 453(1):26–31PubMedCrossRefGoogle Scholar
  6. 6.
    Wheate NJ et al (2007) DNA intercalators in cancer therapy: organic and inorganic drugs and their spectroscopic tools of analysis. Mini Rev Med Chem 7(6):627–648PubMedCrossRefGoogle Scholar
  7. 7.
    Garbett NC, Chaires JB (2008) Binding: a polemic and rough guide. Methods Cell Biol 84:3–23PubMedGoogle Scholar
  8. 8.
    Takeuchi Y et al (1997) Synthesis and antitumor activity of fused quinoline derivative. IV. Novel 11-aminoindolo(2, 3-b)quinolines. Chem Pharm Bull (Tokyo) 45:406–411Google Scholar
  9. 9.
    Monnot M et al (1991) DNA-drug recognition and effects on topoisomerase II-mediated cytotoxicity. A three-mode binding model for ellipticine derivatives. J Biol Chem 266(3):1820–1829PubMedGoogle Scholar
  10. 10.
    Tilak Raj T, Ambeker SY (1988) Synthesis of pyrimido[4Ι, 5Ι:4, 5]thieno(2, 3-b)quinoline-4(3H)-ones. J Chem Res 50:537–551Google Scholar
  11. 11.
    Nandeeshaiah SK, Ambeker SY (1994) Synthesis of 2-aryl–1, 2, 3, 4-tetrahydropyrido [2Ι, 3Ι:4, 5] thieno[2, 3-b]quinolin-4-ones. Indian J Chem 33:375–379CrossRefGoogle Scholar
  12. 12.
    Gopal M, Shenoy S, Doddamani LS (2003) Antitumour activity of 4-amino and 8-methly-4-(3-diethyl aminopropylamino)pyrimido[4′, 5′:4, 5]thieno(2, 3-b)quinoline. J Photochem Photobiol B 72:69–78PubMedCrossRefGoogle Scholar
  13. 13.
    Gopal M, Shahabuddin MS, Inamdar SR (2002) Interaction between 8-methoxypyrimido [4Ι,5Ι:4,5]thieno(2,3-b)quinoline-4(3H)-one antitumour drug and deoxyribo nucleic acid. Proc Indian Acad Sci (Chem Sci) 114:687–696CrossRefGoogle Scholar
  14. 14.
    Shahabuddin MS, Gopal M, Raghavan SC (2009) Intercalating, cytotoxic, antitumour activity of 8-chloro and 4-morpholinopyrimido [4′, 5′:4, 5]thieno(2, 3-b)quinolines. J Photochem Photobiol B 94(1):13–19PubMedCrossRefGoogle Scholar
  15. 15.
    Shahabuddin MS, Gopal M, Raghavan SC (2007) Intercalating and Antitumour Activity of 4- Oxopyrimido[4′, 5′:4, 5]thieno(2, 3-b)quinoline-4(3H)-one. J Cancer Mol 3(5):139–146Google Scholar
  16. 16.
    Gopal M, Veeranna S (2005) 4-Anilinopyrimido[4′, 5′:4, 5]selenolo(2, 3-b)quinoline and 4-piperazino pyrimido[4′, 5′:4, 5]selenolo(2, 3-b)quinoline: new DNA intercalating chromophores with antiproliferative activity. J Photochem Photobiol B 81(3):181–189PubMedCrossRefGoogle Scholar
  17. 17.
    Shahabuddin MS et al (2009) A novel DNA intercalator, butylamino-pyrimido[4′,5′:4,5]selenolo(2,3-b)quinoline, induces cell cycle arrest and apoptosis in leukemic cells. Invest New DrugsGoogle Scholar
  18. 18.
    Shahabuddin MS et al (2010) A novel structural derivative of natural alkaloid ellipticine, MDPSQ, induces necrosis in leukemic cells. Invest New DrugsGoogle Scholar
  19. 19.
    Chiruvella KK et al (2008) Methyl angolensate, a natural tetranortriterpenoid induces intrinsic apoptotic pathway in leukemic cells. FEBS Lett 582(29):4066–4076PubMedCrossRefGoogle Scholar
  20. 20.
    Freimoser FM et al (1999) The MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay is a fast and reliable method for colorimetric determination of fungal cell densities. Appl Environ Microbiol 65(8):3727–3729PubMedGoogle Scholar
  21. 21.
    Kavitha CV et al (2009) Novel derivatives of spirohydantoin induce growth inhibition followed by apoptosis in leukemia cells. Biochem Pharmacol 77(3):348–363PubMedCrossRefGoogle Scholar
  22. 22.
    Gowda NR et al (2009) Synthesis and biological evaluation of novel 1-(4-methoxyphenethyl)-1H-benzimidazole-5-carboxylic acid derivatives and their precursors as antileukemic agents. Bioorg Med Chem Lett 19(16):4594–4600PubMedCrossRefGoogle Scholar
  23. 23.
    Singh NP et al (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191PubMedCrossRefGoogle Scholar
  24. 24.
    Ioannou YA, Chen FW (1996) Quantitation of DNA fragmentation in apoptosis. Nucleic Acids Res 24(5):992–993PubMedCrossRefGoogle Scholar
  25. 25.
    Chiruvella KK, Raghavan SC (2010) A natural compound, methyl angolensate, induces mitochondrial pathway of apoptosis in Daudi cells. Invest New DrugsGoogle Scholar
  26. 26.
    Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2:188–200PubMedCrossRefGoogle Scholar
  27. 27.
    Dervan PB (2001) Molecular recognition of DNA by small molecules. Bioorg Med Chem 9:2215–2235PubMedCrossRefGoogle Scholar
  28. 28.
    Tilak Raj T, Ambekar SY (1988) Synthesis of 4-amino pyrimido [4′, 5′:4, 5]thieno (2, 3-b) quinoline-4(3H)-ones. J Chem Res (S) 50:537–551Google Scholar
  29. 29.
    Nandeeshaiah SK, Ambekar SY (1998) Synthesis, Dimroth rearrangment and blood platelet disaggregation property of pyrimido[4׀, 5׀:4, 5]selenolo(2, 3-b)quinolines: a new class of condensed quinoline. Indian J Chem 37:995–1000Google Scholar
  30. 30.
    Lee EJ et al (2004) Induction of G2/M cell cycle arrest and apoptosis by a benz[f]indole-4, 9-dione analog in cultured human lung (A549) cancer cells. Bioorg Med Chem Lett 14(20):5175–5178PubMedCrossRefGoogle Scholar
  31. 31.
    Mizutani H et al (2002) Mechanism of apoptosis induced by a new topoisomerase inhibitor through the generation of hydrogen peroxide. J Biol Chem 277(34):30684–30689PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • M. S. Shahabuddin
    • 1
  • Mridula Nambiar
    • 1
  • Gopal M. Advirao
    • 2
  • Sathees C. Raghavan
    • 1
  1. 1.Department of BiochemistryIndian Institute of ScienceBangaloreIndia
  2. 2.Department of BiochemistryKuvempu UniversityDavanagereIndia

Personalised recommendations