Skip to main content
Log in

5k, a novel β-O-demethyl-epipodophyllotoxin analogue, inhibits the proliferation of cancer cells in vitro and in vivo via the induction of G2 arrest and apoptosis

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Etoposide (VP-16), a topoisomerase II (Topo II) inhibitor, has been widely used to treat malignancies. Its clinical application, however, has been hindered by the rise of acquired multidrug resistance (MDR). Here, we report that 4β-{[4-(pyrrolidin-1-ylmethyl)phenyl]amino}-4′-O-Demethyl-4-Epipodophyllotoxin (5k), a novel β-O-demethyl-epipodophyllotoxin analogue, possesses higher antitumor activity than its parent compound (VP-16) in a panel of various human tumor cell lines. More importantly, it was also effective against MDR cells both in vitro and in vivo. Using a KB/VCR MDR tumor xenograft model that overexpresses P-gp, 5k (2.5 mg/kg) exhibited a 2.4-fold higher growth inhibition rate versus VP-16 (5 mg/kg). In contrast, 5k and VP-16 displayed similar antitumor activities in a KB tumor xenograft model. Molecular and cellular mechanism studies revealed that 5k targeted Topo II by trapping DNA-Topo II cleavage complexes that could directly cause DNA damage. There were two distinct cellular responses to DNA damage elicited by the treatment with 5k: at low concentrations (20–80 nM), mitotic entry was arrested through the suppression of the activity of Cyclin B1/Cdc 2 complexes via the ATM/ATR signaling pathway; at high concentrations (1.25–5.00 μM), 5k-induced apoptotic signaling was mediated by the mitochondrial death pathways. Collectively, these data demonstrate the potential value of 5k as an antitumor drug candidate that should be further developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

5k :

4β-{[4-(pyrrolidin-1-ylmethyl)phenyl]amino}-4′-O-Demethyl-4-Epipodophyllotoxin

DAPI:

4′6-diamidino-2-phenylindole

JC-1:

5,5′6,6′-tetrachloro-1,1′3,3′-tetraethylbenzimidazol-carbocyanine iodide

ΔΨ:

mitochondrial membrane potential

MDR:

multidrug resistance

DDR:

DNA damage response

Topo II:

Topoisomerase II

VCR:

vincristine

RTV:

relative tumor volume

ATM:

Ataxia-Telangiectasia Mutated

ATR:

Ataxia-Telangiectasia and Rad3 related

p-:

phosphorylated

References

  1. Bakshi R, Galande S, Muniyappa K (2001) Substrate specificity plays an important role in uncoupling the catalytic and scaffolding activities of rat testis DNA topoisomerase IIalpha. J Biomol Struct Dyn 18(5):749–760

    PubMed  CAS  Google Scholar 

  2. Montecucco A, Biamonti G (2007) Cellular response to etoposide treatment. Cancer Lett 252(1):9–18

    Article  PubMed  CAS  Google Scholar 

  3. Hande KR (1998) Etoposide: four decades of development of a topoisomerase II inhibitor. Eur J Cancer 34(10):1514–1521

    Article  PubMed  CAS  Google Scholar 

  4. Meresse P, Dechaux E, Monneret C, Bertounesque E (2004) Etoposide: discovery and medicinal chemistry. Curr Med Chem 11(18):2443–2466

    PubMed  CAS  Google Scholar 

  5. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411(6835):366–374

    Article  PubMed  CAS  Google Scholar 

  6. Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432(7015):316–323

    Article  PubMed  CAS  Google Scholar 

  7. Bartek J, Lukas J (2007) DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19(2):238–245

    Article  PubMed  CAS  Google Scholar 

  8. Bartek J, Bartkova J, Lukas J (2007) DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26(56):7773–7779

    Article  PubMed  CAS  Google Scholar 

  9. Shiloh Y (2001) ATM and ATR: networking cellular responses to DNA damage. Curr Opin Genet Dev 11(1):71–77

    Article  PubMed  CAS  Google Scholar 

  10. Pauklin S, Kristjuhan A, Maimets T, Jaks V (2005) ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress. Biochem Biophys Res Commun 334(2):386–394

    Article  PubMed  CAS  Google Scholar 

  11. Hutt AM, Kalf GF (1996) Inhibition of human DNA topoisomerase II by hydroquinone and p-benzoquinone, reactive metabolites of benzene. Environ Health Perspect 104(6):1265–1269

    Article  PubMed  CAS  Google Scholar 

  12. Lindqvist A, van Zon W, Karlsson Rosenthal C, Wolthuis RM (2007) Cyclin B1-Cdk1 activation continues after centrosome separation to control mitotic progression. PLoS Biol 5(5):e123

    Article  PubMed  Google Scholar 

  13. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868

    Article  PubMed  CAS  Google Scholar 

  14. Pines J (1999) Cell cycle. Checkpoint on the nuclear frontier. Nature 397(6715):172–175

    Article  Google Scholar 

  15. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    Article  PubMed  CAS  Google Scholar 

  16. Wang XM, Li J, Feng XC, Wang Q, Guan DY, Shen ZH (2008) Involvement of the role of Chk1 in lithium-induced G2/M phase cell cycle arrest in hepatocellular carcinoma cells. J Cell Biochem 104(4):1181–1191

    Article  PubMed  CAS  Google Scholar 

  17. Chen T, Wong YS (2008) Selenocystine induces apoptosis of A375 human melanoma cells by activating ROS-mediated mitochondrial pathway and p53 phosphorylation. Cell Mol Life Sci 65(17):2763–2775

    Article  PubMed  CAS  Google Scholar 

  18. Ye J, Wang S, Leonard SS, Sun Y, Butterworth L, Antonini J, Ding M, Rojanasakul Y, Vallyathan V, Castranova V, Shi X (1999) Role of reactive oxygen species and p53 in chromium (VI)-induced apoptosis. J Biol Chem 274(49):34974–34980

    Article  PubMed  CAS  Google Scholar 

  19. Xue L, Zhou B, Liu X, Qiu W, Jin Z, Yen Y (2003) Wild-type p53 regulates human ribonucleotide reductase by protein-protein interaction with p53R2 as well as hRRM2 subunits. Cancer Res 63(5):980–986

    PubMed  CAS  Google Scholar 

  20. Yang Z, Wu D, Bui T, Ho RJ (2008) A novel human multidrug resistance gene MDR1 variant G571A (G191R) modulates cancer drug resistance and efflux transport. J Pharmacol Exp Ther 327(2):474–481

    Article  PubMed  CAS  Google Scholar 

  21. Siegel RM (2006) Caspases at the crossroads of immune-cell life and death. Nat Rev Immunol 6(4):308–317

    Article  PubMed  CAS  Google Scholar 

  22. Taylor BF, McNeely SC, Miller HL, Lehmann GM, McCabe MJ Jr, States JC (2006) p53 suppression of arsenite-induced mitotic catastrophe is mediated by p21CIP1/WAF1. J Pharmacol Exp Ther 318(1):142–151

    Article  PubMed  CAS  Google Scholar 

  23. Smits VA, Klompmaker R, Vallenius T, Rijksen G, Mäkela TP, Medema RH (2000) p21 inhibits Thr161 phosphorylation of Cdc2 to enforce the G2 DNA damage checkpoint. J Biol Chem 275(39):30638–30643

    Article  PubMed  CAS  Google Scholar 

  24. Yu J, Guo QL, You QD, Zhao L, Gu HY, Yang Y, Zhang HW, Tan Z, Wang X (2007) Gambogic acid-induced G2/M phase cell-cycle arrest via disturbing CDK7-mediated phosphorylation of CDC2/p34 in human gastric carcinoma BGC-823 cells. Carcinogenesis 28(3):632–638

    Article  PubMed  CAS  Google Scholar 

  25. Norbury CJ, Zhivotovsky B (2004) DNA damage-induced apoptosis. Oncogene 23(16):2797–2808

    Article  PubMed  CAS  Google Scholar 

  26. Ryan L, O’Callaghan YC, O’Brien NM (2005) The role of the mitochondria in apoptosis induced by 7beta-hydroxycholesterol and cholesterol-5beta, 6beta-epoxide. Br J Nutr 94(4):519–525

    Article  PubMed  CAS  Google Scholar 

  27. Gaul L, Mandl-Weber S, Baumann P, Emmerich B, Schmidmaier R (2008) Bendamustine induces G2 cell cycle arrest and apoptosis in myeloma cells: the role of ATM-Chk2-Cdc25A and ATM-p53-p21-pathways. J Cancer Res Clin Oncol 134(2):245–253

    Article  PubMed  CAS  Google Scholar 

  28. Clifford B, Beljin M, Stark GR, Taylor WR (2003) G2 arrest in response to topoisomerase II inhibitors: the role of p53. Cancer Res 63(14):4074–4081

    PubMed  CAS  Google Scholar 

  29. Siu WY, Lau A, Arooz T, Chow JP, Ho HT, Poon RY (2004) Topoisomerase poisons differentially activate DNA damage checkpoints through ataxia-telangiectasia mutated-dependent and -independent mechanisms. Mol Cancer Ther 3(5):621–632

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiaojun He or Bo Yang.

Additional information

This work was supported by the Scientific Research Foundation of Zhejiang Provincial Health Bureau (No. 2008A043), Natural Science Foundation of Zhejiang Province (Z2090053).

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Figure S1

The chromatogram of 5k. To validate the purity, liquid chromatography–mass spectrum analysis was performed. UV absorbance at 254 nm, the y-axis (Au) means the absorbance, while the x-axis represents elution time (min). Area percent was calculated, the purity of 5k was 99.86%. (GIF 109 kb)

High Resolution Image (TIFF 9273 kb)

Figure S2

Effects of 5k and VP-16 on P-gp ATPase activity. The decrease in luminescence of untreated samples compared to samples plus Na3VO4 represents basal P-gp ATPase activity. The P-gp ATPase activity in response to the treatment of verapamil (200 μM), 5k (100 μM, 25 μM), VP-16(100 μM, 25 μM) were expressed as the percentage of basal activity. (GIF 79 kb)

High Resolution Image (TIFF 24 kb)

Figure S3

Morphological alterations of KB cells after 5.0 μM 5k exposition in the presence or absence of 100 μM Boc-D-FMK pretreatment for 30 min, detected by microscope at the same magnification. (GIF 144 kb)

High Resolution Image (TIFF 6516 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, D., Cao, J., Qian, S. et al. 5k, a novel β-O-demethyl-epipodophyllotoxin analogue, inhibits the proliferation of cancer cells in vitro and in vivo via the induction of G2 arrest and apoptosis. Invest New Drugs 29, 786–799 (2011). https://doi.org/10.1007/s10637-010-9423-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9423-5

Keywords

Navigation