Skip to main content

Advertisement

Log in

An in vitro comparative study with furyl-1,4-quinones endowed with anticancer activities

  • Preclinical Studies
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

We describe the biological activity of some furylbenzo- and naphthoquinones (furylquinones) on hepatocarcinoma cells and healthy rat liver slices. The effects of furylquinones on cancer cells (Transplantable Liver Tumor, TLT) were assessed by measuring cell death (membrane cell lysis); intracellular contents of ATP and GSH and the activity of caspase-3 were used to determine the type of cell death. Most of the furylquinones tested (at a concentration of 25 μg/ml) induced caspase-independent cell death but compound 4 had no cytotoxic effects. The levels of both ATP and GSH were severely affected by quinones 1, 2 and 5, while no effect was observed with compound 4. These cytotoxic properties of quinones are associated with physico-chemical properties as shown by the LUMO energies and lipophilicity. Interestingly, no cytotoxic effects of furylquinones were detected when the in vitro model of precision-cut liver slices (PCLS) was used. Indeed, although CYP2E1 activity was slightly affected, ATP and GSH levels as well as protein synthesis were not modified by furylquinones. Paracetamol, a well-known hepatotoxicant, reduced these parameters by more than 80% compared to control conditions. Taking into account the considerable incidence of adverse-effects induced by most current anticancer drugs, the selective cytotoxicity shown by compounds 1, 2 and 5, in particular that of 1, represents a safety factor that encourages the further development of these quinones as new drugs in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P (2007) Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18:581–592. doi:10.1093/annonc/mdl498

    Article  PubMed  CAS  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249. doi:10.3322/caac.20006

    Article  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70. doi:10.1016/S0092-8674(00)81683-9

    Article  PubMed  CAS  Google Scholar 

  4. Warburg OH (1956) On the origin of cancer cells. Science 123:309–314. doi:10.1126/science.123.3191.309

    Article  PubMed  CAS  Google Scholar 

  5. Verrax J, Curi R, Beck R, Dejeans N, Taper H, Buc Calderon P (2009) In situ modulation of oxidative stress: a novel and efficient strategy to kill cancer cells. Curr Med Chem 16:1821–1830

    Article  PubMed  CAS  Google Scholar 

  6. Verrax J, Cadrobbi J, Marques C, Taper HS, Habraken Y, Piette J, Buc Calderon P (2004) Ascorbate potentiates the cytotoxicity of menadione leading to an oxidative stress that kills cancer cells by a non-apoptotic caspase-3 independent form of cell death. Apoptosis 9:223–233. doi:10.1023/B:APPT.0000018804.26026.1a

    Article  PubMed  CAS  Google Scholar 

  7. Wu FY, Sun TP (1999) Vitamin K3 induces cell cycle arrest and cell death by inhibiting Cdc25 phosphatase. Eur J Cancer 35:1388–1393. doi:10.1016/S0959-8049(99)00156-2

    Article  PubMed  CAS  Google Scholar 

  8. Hollensworth SB, Shen C, Sim JE, Spitz DR, Wilson GL, Ledoux SP (2000) Glial cell type-specific responses to menadione-induced oxidative stress. Free Rad Biol Med 28:1161–1174. doi:10.1016/S0891-5849(00)00214-8

    Article  PubMed  CAS  Google Scholar 

  9. Warren MC, Bump EA, Medeiros D, Braunhut SJ (2000) Oxidative stress-induced apoptosis of endothelial cells. Free Rad Biol Med 29:537–547. doi:10.1016/S0891-5849(00)00353-1

    Article  PubMed  CAS  Google Scholar 

  10. Benites J, Rojo L, Valderrama JA, Taper H, Buc Calderon P (2008) Part 1: Effect of vitamin C on the biological activity of two euryfurylbenzoquinones on TLT, a murine hepatoma cell line. Eur J Med Chem 43:1813–1817. doi:10.1016/j.ejmech.2007.11.015

    Article  PubMed  CAS  Google Scholar 

  11. Benites J, Valderrama JA, Taper H, Buc Calderon P (2009) Part 2: influence of 2- euryfuryl-1, 4-naphthoquinone and its peri-hydroxy derivatives on both cell death and metabolism of TLT cells, a murine hepatoma cell line. Modulation of cytotoxicity by vitamin C. Chem Pharm Bull 57:615–619. doi:10.1248/cpb.57.615

    Article  PubMed  CAS  Google Scholar 

  12. Duerksen JD, Paul IJ (1976) Satellite DNA sequence content of polylysine-titratable and nuclease-resistant fractions of mouse liver hepatoma chromatin. Nucleic Acids Res 3:2277–2291

    PubMed  CAS  Google Scholar 

  13. Taper HS, de Gerlache J, Lans M, Roberfroid M (1987) Non-toxic potentiation of cancer chemotherapy by combined C and K3 vitamin pre-treatment. Int J Cancer 40:575–579

    Article  PubMed  CAS  Google Scholar 

  14. Jordan BF, Gregoire V, Demeure RJ, Sonveaux P, Feron O, O’Hara J, Vanhulle V, Delzenne N, Gallez B (2002) Insulin increases the sensitivity of tumors to irradiation: involvement of an increase in tumor oxygenation mediated by a nitric oxide-dependent decrease of the tumor cells oxygen consumption. Cancer Res 62:3555–3561

    PubMed  CAS  Google Scholar 

  15. Evdokimova E, Taper H, Buc Calderon P (2001) Role of ATP and glycogen reserves in both paracetamol sulfation and glucuronidation by cultured precision-cut rat liver slices. Toxicol In Vitro 15:683–690. doi:10.1016/S0887-2333(01)00091-1

    Article  PubMed  CAS  Google Scholar 

  16. Rekka E, Evdokimova E, Eeckhoudt S, Buc Calderon P (2001) Reoxygenation after cold hypoxic storage of cultured precision-cut rat liver slices: effects on cellular metabolism and drug biotransformation. Biochim Biophys Acta 1568:245–251. doi:10.1016/S0304-4165(01)00225-2

    PubMed  CAS  Google Scholar 

  17. Rekka E, Evdokimova E, Eeckhoudt S, Labbar G, Buc Calderon P (2002) Role of temperature on protein and mRNA cytochrome P450 3A (CYP3A) isozymes expression and midazolam oxidation by cultured rat precision-cut liver slices. Biochem Pharmacol 64:633–643. doi:10.1016/S0006-2952(02)01258-3

    Article  PubMed  CAS  Google Scholar 

  18. Wauthier V, Verbeeck RK, Buc Calderon P (2004) The use of precision-cut liver slices from male Wistar rats as a tool to study age related changes in CYP3A induction and in formation of paracetamol conjugates. Toxicol In Vitro 18:879–885. doi:10.1016/j.tiv.2004.04.013

    Article  PubMed  CAS  Google Scholar 

  19. Corcoran GB, Mitchell JR, Vaishnav YN, Horning EC (1980) Evidence that acetaminophen and N-hydroxyacetaminophen form a common arylating intermediate, N-acetyl-p-benzoquinoneimine. Mol Pharmacol 18:536–542

    PubMed  CAS  Google Scholar 

  20. Benites J, Valderrama JA, Rivera F, Rojo L, Campos N, Pedro M, Jose Nascimento M (2008) Studies on quinones. Part 42: Synthesis of furylquinone and hydroquinones with antiproliferative activity against human tumor cell lines. Bioorg Med Chem 16:862–868. doi:10.1016/j.bmc.2007.10.028

    Article  PubMed  CAS  Google Scholar 

  21. Wroblewsky F, Ladue JS (1955) Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med 90:210–213

    Google Scholar 

  22. Lowry O, Rosebrough N, Farr L, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 183:265–275

    Google Scholar 

  23. Cohn VH, Lyle JA (1966) A fluorometric assay for glutathione. Anal Biochem 14:434–440

    Article  PubMed  CAS  Google Scholar 

  24. Seglen PO (1976) Incorporation of radioactive amino acids into protein in isolated rat hepatocytes. Biochim Biophys Acta 442:391–404

    PubMed  CAS  Google Scholar 

  25. Wauthier V, Schenten V, Verbeeck RK, Buc Calderon P (2006) Ageing is associated with increased expression but decreased activity of CYP2E1 in male Wistar rats. Life Sci 79:1913–1920. doi:10.1016/j.lfs.2006.06.046

    Article  PubMed  CAS  Google Scholar 

  26. Traven VF (1992) Frontier orbitals and properties of organic molecules. Ellis Horwood Limited, New York

    Google Scholar 

  27. Sattler M, Verma S, Shrikhande G, Byrne CH, Pride YB, Winkler T, Greenfield EA, Salgia R, Griffin JD (2000) The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem 275:24273–24278. doi:10.1074/jbc.M002094200

    Article  PubMed  CAS  Google Scholar 

  28. Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, Wahl GM (2002) c- Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9:1031–1044. doi:10.1016/S1097-2765(02)00520-8

    Article  PubMed  CAS  Google Scholar 

  29. Yang J, Lam EW, Hammad HM, Oberley TD, Oberley LW (2002) Antioxidant enzyme levels in oral squamous cell carcinoma and normal human oral epithelium. J Oral Pathol Med 31:71–77. doi:10.1034/j.1600-0714.2002.310202

    Article  PubMed  CAS  Google Scholar 

  30. Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, Huang P (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10:241–252. doi:10.1016/j.ccr.2006.08.009

    Article  PubMed  CAS  Google Scholar 

  31. Watanabe T, Komuro Y, Kiyomatsu T, Kanazawa T, Kazama Y, Tanaka J, Tanaka T, Yamamoto Y, Shirane M, Muto T, Nagawa H (2006) Prediction of sensitivity of rectal cancer cells in response to preoperative radiotherapy by DNA microarray analysis of gene expression profiles. Cancer Res 66:3370–3374

    Article  PubMed  CAS  Google Scholar 

  32. Rawal RM, Patel PS, Vyas RK, Sainger RN, Shah MH, Peshavariya HM, Patel DD, Bhatavdekar JM (2001) Role of pretherapeutic biomarkers in predicting postoperative radiotherapy response in patients with advanced squamous cell carcinoma. Int J Radiat Biol 77:1141–1146. doi:10.1080/09553000110067788

    Article  PubMed  CAS  Google Scholar 

  33. Ekström G, Ingelman-Sundberg M (1989) Rat liver microsomal NADPH-supported oxidase activity and lipid peroxidation dependent on ethanol-inducible cytochrome P-450 (P-450IIE1). Biochem Pharmacol 38:1313–1319

    Article  PubMed  Google Scholar 

  34. Goasduff T, Cederbaum AI (1999) NADPH-dependent microsomal electron transfer increases degradation of CYP2E1 by the proteasome complex: role of reactive oxygen species. Arch Biochem Biophys 370:258–270. doi:10.1006/abbi.1999.1399

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Isabelle Blave and Véronique Allaeys for their excellent technical assistance. Financial support by UNAP is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Buc Calderon.

Additional information

In memoriam to Dr. Henry S. Taper who died on 24/04/2009

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benites, J., Valderrama, J.A., Taper, H. et al. An in vitro comparative study with furyl-1,4-quinones endowed with anticancer activities. Invest New Drugs 29, 760–767 (2011). https://doi.org/10.1007/s10637-010-9419-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9419-1

Keywords

Navigation