Skip to main content

Advertisement

Log in

Selective proapoptotic activity of polyphenols from red wine on teratocarcinoma cell, a model of cancer stem-like cell

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Cancer stem cells are expected to be responsible for tumor initiation and metastasis. These cells are therefore potential targets for innovative anticancer therapies. However, the absence of bona fide cancer stem cell lines is a real problem for the development of such approaches. Since teratocarcinoma cells are totipotent stem cells with a high degree of malignancy, we used them as a model of cancer stem cells in order to evaluate the anticancer chemopreventive activity of red wine polyphenols (RWPs) and to determine the underlying cellular and molecular mechanisms. We therefore investigated the effects of RWPs on the embryonal carcinoma (EC) cell line P19 which was grown in the same culture conditions as the most appropriate normal cell line counterpart, the pluripotent embryonic fibroblast cell line NIH/3T3. The present study indicates that RWPs selectively inhibited the proliferation of P19 EC cells and induced G1 cell cycle arrest in a dose-dependent manner. Moreover, RWPs treatment specifically triggered apoptosis of P19 EC cells in association with a dramatic upregulation of the tumor suppressor gene p53 and caspase-3 activation. Our findings suggest that the chemopreventive activity of RWPs on tumor initiation and development is related to a growth inhibition and a p53-dependent induction of apoptosis in teratocarcinoma cells. In addition, this study also shows that the EC cell line is a convenient source for studying the responses of cancer stem cells to new potential anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51:1–28. doi:10.1016/j.critrevonc.2004.04.007

    Article  PubMed  Google Scholar 

  2. Sagar J, Chaib B, Sales K, Winslet M, Seifalian A (2007) Role of stem cells in cancer therapy and cancer stem cells. Cancer Cell Int 7:9. doi:10.1186/1475-2867-7-9

    Article  PubMed  Google Scholar 

  3. Garcion E, Naveilhan P, Berger F, Wion D (2009) Cancer stem cells: beyond Koch's postulates. Cancer Lett 278:3–8. doi:10.1016/j.canlet.2008.09.006

    Article  CAS  PubMed  Google Scholar 

  4. Bixby S, Kruger GM, Mosher JT, Joseph NM, Morrison SJ (2002) Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron 35:643–656. doi:10.1016/S0896-6273(02)00825-5

    Article  CAS  PubMed  Google Scholar 

  5. Salnikov AV, Kusumawidjaja G, Rausch V, Bruns H, Gross W, Khamidjanov A, Ryschich E, Gebhard MM, Moldenhauer G, Büchler MW, Schemmer P, Herr I (2009) Cancer stem cell marker expression in hepatocellular carcinoma and liver metastases is not sufficient as single prognostic parameter. Cancer Lett 275:185–193. doi:10.1016/j.canlet.2008.10.015

    Article  CAS  PubMed  Google Scholar 

  6. Rosenberg DW, Giardina C, Tanaka T (2009) Mouse models for the study of colon carcinogenesis. Carcinogenesis 30:183–196. doi:10.1093/carcin/bgn267

    Article  CAS  PubMed  Google Scholar 

  7. Singh M, Tyagi S, Bhui K, Prasad S, Shukla Y (2009) Regulation of cell growth through cell cycle arrest and apoptosis in HPV 16 positive human cervical cancer cells by tea polyphenols. Invest New Drugs [Epub ahead of print]. doi: 10.1007/s10637-009-9240-x

  8. Damianaki A, Bakogeorgou E, Kampa M, Notas G, Hatzoglou A, Panagiotou S, Gemetzi C, Kouroumalis E, Martin PM, Castanas E (2000) Potent inhibitory action of red wine polyphenols on human breast cancer cells. J Cell Biochem 78:429–441. doi:10.1002/1097-4644(20000901)78:3<429::AID-JCB8>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  9. Briviba K, Pan L, Rechkemmer G (2002) Red wine polyphenols inhibit the growth of colon carcinoma cells and modulate the activation pattern of mitogen-activated protein kinases. J Nutr 132:2814–2818

    CAS  PubMed  Google Scholar 

  10. He S, Sun C, Pan Y (2008) Red wine polyphenols for cancer prevention. Int J Mol Sci 9:842–853. doi:10.3390/ijms9050842

    Article  CAS  PubMed  Google Scholar 

  11. Kundu JK, Surh YJ (2008) Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Lett 269:243–261. doi:10.1016/j.canlet.2008.03.057

    Article  CAS  PubMed  Google Scholar 

  12. Bernhaus A, Ozsvar-Kozma M, Saiko P, Jaschke M, Lackner A, Grusch M, Horvath Z, Madlener S, Krupitza G, Handler N, Erker T, Jaeger W, Fritzer-Szekeres M, Szekeres T (2009) Antitumor effects of KITC, a new resveratrol derivative, in AsPC-1 and BxPC-3 human pancreatic carcinoma cells. Invest New Drugs 27:393–401. doi:10.1007/s10637-008-9183-7

    Article  CAS  PubMed  Google Scholar 

  13. Waterhouse AL (2002) Wine phenolics. Ann NY Acad Sci 957:21–36. doi:10.1111/j.1749-6632.2002.tb02903.x

    Article  CAS  PubMed  Google Scholar 

  14. Wallenborg K, Vlachos P, Eriksson S, Huijbregts L, Arnér ES, Joseph B, Hermanson O (2009) Red wine triggers cell death and thioredoxin reductase inhibition: effects beyond resveratrol and SIRT1. Exp Cell Res 315:1360–1371. doi:10.1016/j.yexcr.2009.02.022

    Article  CAS  PubMed  Google Scholar 

  15. Fuhrmann G, Sylvester I, Schöler HR (1999) Repression of Oct-4 during embryonic cell differentiation correlates with the appearance of TRIF, a transiently induced DNA-binding factor. Cell Mol Biol 45:717–724

    CAS  PubMed  Google Scholar 

  16. Long LH, Kirkland D, Whitwell J, Halliwell B (2007) Different cytotoxic and clastogenic effects of epigallocatechin gallate in various cell-culture media due to variable rates of its oxidation in the culture medium. Mutat Res 634:177–183. doi:10.1016/j.mrgentox.2007.07.009

    CAS  PubMed  Google Scholar 

  17. Halliwell B (2008) Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys 476:107–112. doi:10.1016/j.abb.2008.01.028

    Article  CAS  PubMed  Google Scholar 

  18. Todaro GJ, Green H (1963) Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol 17:299–313

    Article  CAS  PubMed  Google Scholar 

  19. Todaro GJ, Lazar GK, Green H (1965) The initiation of cell division in a contact-inhibited mammalian cell line. J Cell Physiol 66:325–333

    Article  CAS  PubMed  Google Scholar 

  20. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM (2000) Transcriptional regulation of adipogenesis. Genes Dev 14:1293–1307. doi:10.1101/gad.14.11.1293

    CAS  PubMed  Google Scholar 

  21. Garreta E, Genové E, Borrós S, Semino CE (2006) Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three-dimensional self-assembling peptide scaffold. Tissue Eng 12:2215–2227. doi:10.1089/ten.2006.12.2215

    Article  CAS  PubMed  Google Scholar 

  22. Carando S, Teissedre PL, Pascual-Martinez L, Cabanis JC (1999) Levels of flavan-3-ols in French wines. J Agric Food Chem 47:4161–4166. doi:10.1021/jf9810564

    Article  CAS  PubMed  Google Scholar 

  23. Auger C, Caporiccio B, Landrault N, Teissedre PL, Laurent C, Cros G, Besançon P, Rouanet JM (2002) Red wine phenolic compounds reduce plasma lipids and apolipoprotein B and prevent early aortic atherosclerosis in hypercholesterolemic golden Syrian hamsters (Mesocricetus auratus). J Nutr 132:1207–1213

    CAS  PubMed  Google Scholar 

  24. Fuhrmann G, Chung AC, Jackson KJ, Hummelke G, Baniahmad A, Sutter J, Sylvester I, Schöler HR, Cooney AJ (2001) Mouse germline restriction of Oct4 expression by germ cell nuclear factor. Dev Cell 1:377–387. doi:10.1016/S1534-5807(01)00038-7

    Article  CAS  PubMed  Google Scholar 

  25. Vaseva AV, Moll UM (2009) The mitochondrial p53 pathway. Biochim Biophys Acta 1787:414–420. doi:10.1016/j.bbabio.2008.10.005

    Article  CAS  PubMed  Google Scholar 

  26. Pesce M, Schöler HR (2000) Oct-4: control of totipotency and germline determination. Mol Reprod Dev 55:452–457

    Article  CAS  PubMed  Google Scholar 

  27. Okazawa H, Shimizu J, Kamei M, Imafuku I, Hamada H, Kanazawa I (1996) Bcl-2 inhibits retinoic acid-induced apoptosis during the neural differentiation of embryonal stem cells. J Cell Biol 132:955–968

    Article  CAS  PubMed  Google Scholar 

  28. Lee YF, Bao BY, Chang C (2004) Modulation of the retinoic acid-induced cell apoptosis and differentiation by the human TR4 orphan nuclear receptor. Biochem Biophys Res Commun 323:876–883. doi:10.1016/j.bbrc.2004.08.176

    Article  CAS  PubMed  Google Scholar 

  29. Qin H, Yu T, Qing T, Liu Y, Zhao Y, Cai J, Li J, Song Z, Qu X, Zhou P, Wu J, Ding M, Deng H (2007) Regulation of apoptosis and differentiation by p53 in human embryonic stem cells. J Biol Chem 282:5842–5852. doi:10.1074/jbc.M610464200

    Article  CAS  PubMed  Google Scholar 

  30. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311

    CAS  PubMed  Google Scholar 

  31. Guo Y, Mantel C, Hromas RA, Broxmeyer HE (2008) Oct-4 is critical for survival/antiapoptosis of murine embryonic stem cells subjected to stress: effects associated with Stat3/survivin. Stem Cells 26:30–34. doi:10.1634/stemcells.2007-0401

    Article  CAS  PubMed  Google Scholar 

  32. Gonin S, Diaz-Latoud C, Richard MJ, Ursini MV, Imbo A, Manero F, Arrigo AP (1999) p53/T-antigen complex disruption in T-antigen transformed NIH3T3 fibroblasts exposed to oxidative stress: correlation with the appearance of a Fas/APO-1/CD95 dependent, caspase independent, necrotic pathway. Oncogene 18:8011–8023

    Article  CAS  PubMed  Google Scholar 

  33. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507. doi:10.1038/ng.127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study has been supported by grants of the Ligue contre le Cancer (Comité du Haut-Rhin, France) and the Office National Interprofessionnel des Fruits, des Légumes, des Vins et de l’Horticulture (Action Vin et Santé, France). Tanveer Sharif is supported by a fellowship from the Higher Education Commission of Pakistan. Mahmoud Alhosin is supported by a fellowship from the Syrian Higher Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Fuhrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharif, T., Auger, C., Bronner, C. et al. Selective proapoptotic activity of polyphenols from red wine on teratocarcinoma cell, a model of cancer stem-like cell. Invest New Drugs 29, 239–247 (2011). https://doi.org/10.1007/s10637-009-9352-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9352-3

Keywords

Navigation