Skip to main content

Advertisement

Log in

Inhibition of protein synthesis by imexon reduces HIF-1α expression in normoxic and hypoxic pancreatic cancer cells

  • SHORT REPORT
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Hypoxia-inducing factor-1 alpha (HIF-1α), is a major survival factor for tumor cells growing in a low oxygen environment. The anti-cancer agent imexon binds thiols and causes accumulation of reactive oxygen species (ROS) in pancreatic cancer cells. Unlike many cytotoxic agents, imexon is equi-cytotoxic in human MiaPaCa-2 and Panc-1 cells grown in normoxic (21% O2) and hypoxic (1% O2) conditions. Western blot analyses of imexon-treated cells demonstrated that imexon reduces HIF-1α protein levels in both normoxic and hypoxic conditions in a time- and concentration-dependant fashion. Gemcitabine did not similarly affect HIF-1α levels. Imexon did not reduce transcription of new HIF-1α mRNA, but did reduce the synthesis of new proteins, including HIF-1α, measured by 35S methionine/cysteine (Met/Cys) incorporation. Concurrently, the half-life of existing HIF-1α protein was increased by imexon, in association with a marked inhibition of chymotryptic activity in the 20S proteasome. The inhibition of HIF-1α translation was not specific, rather it was part of a general decrease in protein translation caused by imexon. This inhibitory effect on translation did not involve phosphorylation of eukaryotic initiation factor-2α (eIF-2α) and was not closely correlated to cell growth inhibition by imexon, suggesting that mechanisms other than protein synthesis inhibition contribute to the drug’s cytotoxic effects. In summary, imexon blocks the translation of new proteins, including HIF-1α, and this effect overcomes an increase in the stability of preformed HIF-1α due to proteasome inhibition by imexon. Because net HIF-1α levels are reduced by imexon, combination studies with other drugs affected by HIF-1α survival signaling are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Dragovich T, Gordon M, Mendeslon D et al (2007) Phase I trial of imexon in patients with advanced malignancy. J Clin Oncol 25:1779–1784

    Article  PubMed  CAS  Google Scholar 

  2. Cohen SJ, Zalupski M, Modiano M, Conkling P, Patt Y, Davis P, Dorr R, Boytim M, Hersh E (2008) A phase I study of Amplimexon (AMP, imexon inj.) plus gemcitabine (Gem) as first line therapy in advanced pancreatic cancer (PC) with preclinical mechanistic study of dose limiting toxicity (DLT). Proceedings of the ASCO Annual Meeting

  3. Iyengar BS, Dorr RT, Remers WA (2004) Chemical basis for the biological activity of imexon and related cyanoaziridines. J Med Chem 47:218–223

    Article  PubMed  CAS  Google Scholar 

  4. Dvorakova K, Payne CM, Tome ME, Briehl MM, McClure T, Dorr RT (2000) Induction of oxidative stress and apoptosis in myeloma cells by the aziridine-containing agent imexon. Biochem Pharmacol 60:749–758

    Article  PubMed  CAS  Google Scholar 

  5. Dvorakova K, Waltmire CN, Payne CM, Tome ME, Briehl MM, Dorr RT (2001) Induction of mitochondrial changes in myeloma cells by imexon. Blood 97:3544–3551

    Article  PubMed  CAS  Google Scholar 

  6. Dvorakova K, Payne CM, Landowski TH, Tome ME, Halperin DS, Dorr RT (2002) Imexon activates an intrinsic apoptosis pathway in RPMI8226 myeloma cells. Anticancer Drugs 13:1–13

    Article  Google Scholar 

  7. Dorr RT, Raymond MA, Landowski TH, Roman NO, Fukushima S (2005) Induction of apoptosis and cell cycle arrest by imexon in human pancreatic cancer cells lines. Int J Gastrointest Cancer 36(1):15–28

    Article  PubMed  CAS  Google Scholar 

  8. Hersh EM, Gschwind CR, Taylor CW, Dorr RT, Taetle R, Salmon SE (1992) Antiproliferative and antitumor activity of the 2-cyanoaziridine compound imexon on tumor cell lines and fresh tumor cells in vitro. J Natl Cancer Inst 84:1238–1244

    Article  PubMed  CAS  Google Scholar 

  9. Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34(Pt 1):7–11

    PubMed  CAS  Google Scholar 

  10. Tan S, Somia N, Maher P, Schubert D (2001) Regulation of antioxidant metabolism by translation initiation factor 2 alpha. J Cell Biol 152:997–1006

    Article  PubMed  CAS  Google Scholar 

  11. Jiang HY, Wek RC (2005) Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J Biol Chem 280(14):14189–14202

    Article  PubMed  CAS  Google Scholar 

  12. Oettle H, Arnold D, Hempel C, Riess H (2000) The role of gemcitabine alone and in combination in the treatment of pancreatic cancer. Anticancer Drugs 11:771–786

    Article  PubMed  CAS  Google Scholar 

  13. Poplin E, Levy DE, Berlin M (2006) Phase III trial of gemcitabine (30-minute infusion) versus gemcitabine (fixed-dose-rate infusion (FDR) versus gemcitabine + oxaliplatin (GEMOX) in patients with advanced pancreatic cancer (E6201). ASCO Proceedings 24(18s):180s

  14. Moore MJ, Goldstein D, Hamm J et al (2007) Erlotinib plus gemcitabine compared to gemcitabine alone in patients with advanced pancreatic cancer. A phase III trial of the National Cancer Institute of Canada Clinical Trials Group (NCIC-CTG). J Clin Oncol 25(15):1960–1966

    Article  PubMed  CAS  Google Scholar 

  15. Senderowicz AM, Johnson JR, Sridhara R, Zimmerman P, Justice R, Pazdur R (2007) Erlotinib/gemcitabine for first-line treatment of locally advanced or metastatic adenocarcinoma of the pancreas. Oncology 21:1696–1706

    PubMed  Google Scholar 

  16. Koong AC, Mehta VK, Le QT et al (2000) Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 48:919–922

    Article  PubMed  CAS  Google Scholar 

  17. Megibow AJ (1992) Pancreatic adenocarcinoma: designing the examination to evaluate the clinical questions. Radiology 183:297–303

    PubMed  CAS  Google Scholar 

  18. Duffy JP, Eibl G, Reber HA, Hines OJ (2003) Influence of hypoxia and neoangiogenesis on the growth of pancreatic cancer. Mol Cancer 2:12

    Article  PubMed  Google Scholar 

  19. Kitada T, Seki S, Sakaguchi H, Sawada T, Hirakawa K, Wakasa K (2003) Clinicopathological significance of hypoxia-inducible factor-1a expression in human pancreatic carcinoma. Histopathology 43:550–555

    Article  PubMed  CAS  Google Scholar 

  20. Buchler P, Reber HA, Buchler M et al (2003) Hypoxia-inducible factor 1 regulates vascular endothelial growth factor expression in human pancreatic cancer. Pancreas 26:56–64

    Article  PubMed  CAS  Google Scholar 

  21. Akakura N, Kobayashi M, Horiuchi I et al (2001) Constitutive expression of hypoxia-inducible factor-1a renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res 61:6548–6554

    PubMed  CAS  Google Scholar 

  22. Welsh SJ, Koh MY, Powis G (2006) The hypoxic inducible stress response as a target for cancer drug discovery. Semin Oncol 33:486–497

    Article  PubMed  CAS  Google Scholar 

  23. Semenza GL, Roth PH, Fang HM, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269:23757–23763

    PubMed  CAS  Google Scholar 

  24. Brown JM (2002) Tumor microenvironment and the response to anticancer therapy. Cancer Biol Ther 1:453–458

    PubMed  Google Scholar 

  25. Liao D, Corle C, Seagroves TN, Johnson RS (2007) Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 67:563–572

    Article  PubMed  CAS  Google Scholar 

  26. Teicher BA (1994) Hypoxia and drug resistance. Cancer Metastasis Rev 13:139–168

    Article  PubMed  CAS  Google Scholar 

  27. Yokoi K, Fidler IJ (2004) Hypoxia increases resistance of human pancreatic cancer cells to apoptosis induced by gemcitabine. Clin Cancer Res 10:2299–2306

    Article  PubMed  CAS  Google Scholar 

  28. Sanjuan-Pla A, Cervera AM, Apostolova N et al (2005) A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signaling of HIF-1alpha. FEBS Lett 579:2669–2674

    Article  PubMed  CAS  Google Scholar 

  29. Guzy RD, Hoyos B, Robin E et al (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–408

    Article  PubMed  CAS  Google Scholar 

  30. Chandel NS, McClintock DS, Feliciano CE et al (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1a during hypoxia: a mechanism of 02 sensing. J Biol Chem 275:25130–25138

    Article  PubMed  CAS  Google Scholar 

  31. Simon MC (2006) Mitochondrial reactive oxygen species are required for hypoxic HIF alpha stabilization. Adv Exp Med Biol 588:165–170

    Article  PubMed  Google Scholar 

  32. Yunis A, Arimura GK, Russin DJ (1977) Human pancreatic carcinoma (MiaPaCa-2) in continuous culture: sensitivity to asparaginase. Int J Cancer 19:128–135

    Article  PubMed  CAS  Google Scholar 

  33. Lieber M, Mazzetta J, Nelson-Rees W, Kaplan M, Todaro G (1975) Establishment of a continuous tumor-cell line (Panc-1) from a human carcinoma of the exocrine pancreas. Int J Cancer 15:741–747

    Article  PubMed  CAS  Google Scholar 

  34. Lightcap ES, McCormack TA, Pien CS, Chau V, Adams J, Elliott PJ (2000) Proteasome inhibition measurements: clinical application. Clin Chem 46:673–683

    PubMed  CAS  Google Scholar 

  35. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  36. Shain KH, Landowski TH, Dalton WS (2002) Adhesion-mediated intracellular redistribution of c-Fas-associated death domain-like IL-1-converting enzyme-like inhibitory protein-long confers resistance to CD95-induced apoptosis in hematopoietic cancer cell lines. J Immunol 168:2544–2553

    PubMed  CAS  Google Scholar 

  37. Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8:739–758

    Article  PubMed  CAS  Google Scholar 

  38. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Cancer 3:721–732

    PubMed  CAS  Google Scholar 

  39. Powis G, Kirkpatrick L (2004) Hypoxia inducible factor-1a as a cancer drug target. Mol Cancer Ther 3:647–654

    PubMed  CAS  Google Scholar 

  40. Mabjeesh NJ, Post DE, Willard MT et al (2002) Geldanamycin induces degradation of hypoxia-inducible factor 1a protein via the proteosome pathway in prostate cancer cells. Cancer Res 62:2478–2482

    PubMed  CAS  Google Scholar 

  41. Chang H, Shyu KG, Lee CC et al (2003) GL331 inhibits HIF-1a expression in a lung cancer model. Biochem Biophys Res Commun 302:95–100

    Article  PubMed  CAS  Google Scholar 

  42. Lee YM, Kim SH, Kim HS et al (2003) Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1a activity. Biochem Biophys Res Commun 300:241–246

    Article  CAS  Google Scholar 

  43. Oliver VK, Patton AM, Desai S, Lorang D, Libutti SK, Kohn EC (2003) Regulation of the pro-angiogenic microenvironment by carboxyamido-triazole. J Cell Physiol 197:139–148

    Article  PubMed  CAS  Google Scholar 

  44. Rapisarda A, Uranchimerg B, Sordet O, Pommier Y, Shoemaker PH, Belillo G (2004) Topoisomerase 1-mediated inhibition of hypoxia-inducible factor 1:mechanism and therapeutic implications. Cancer Res 64:1475–1482

    Article  PubMed  CAS  Google Scholar 

  45. Zhong H, Chiles K, Feldser D et al (2000) Modulation of hypoxia-inducible factor 1a expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60:1541–1545

    PubMed  CAS  Google Scholar 

  46. Raijiman I, Levin B (1995) Exocrine tumors of pancreas. In: Haubrich WS, Schaffner F (eds) Bockus gastroentrology. 5th edn. Saunders, Philadelphia, pp 2984–3001

    Google Scholar 

  47. Ranniger K, Saldino RM (1966) Arteriographic diagnosis of pancreas lesion. Radiology 86:470–474

    PubMed  CAS  Google Scholar 

  48. Yassa NA, Yang J, Stein S, Johnson M, Ralls P (1997) Gray-scale and color flow sonography of pancreatic ductal adenocarcinoma. J Clin Ultrasound 25:473–470

    Article  PubMed  CAS  Google Scholar 

  49. Scott J, Dorr RT, Samulitis B, Landowski TH (2007) Imexon-based combination chemotherapy in A375 human melanoma and RPMI 8226 human myeloma cell lines. Cancer Chemother Pharmacol 59:749–757

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by grants CA17094 (RTD) and CA115626 (RTD) from the National Institutes of Health, Bethesda, MD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert T. Dorr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samulitis, B.K., Landowski, T.H. & Dorr, R.T. Inhibition of protein synthesis by imexon reduces HIF-1α expression in normoxic and hypoxic pancreatic cancer cells. Invest New Drugs 27, 89–98 (2009). https://doi.org/10.1007/s10637-008-9149-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-008-9149-9

Keywords

Navigation