Skip to main content

Advertisement

Log in

Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by a new series of substituted-1,3,4-oxadiazole derivatives

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The multiple pharmacological actions of unique synthetic compounds are a prerequisite for classifying a drug as highly efficacious, because the multiple pharmacological actions offer the possibility of treating various diseases like cancer. 1,3,4-Oxadiazoles are an important class of heterocyclic compounds with broad spectrum of biological activities. In this study we focused on the ability of these derivatives to induce apoptosis in cultured MCF-7 breast cancer cells. Treatment of MCF-7 cells with varying concentrations of the different derivatives resulted in dose and time dependent sequence of events marked by apoptosis, as shown by loss of cell viability, chromatin condensation, internucleosomal DNA fragmentation and sub G0 phase accumulation. Furthermore, apoptosis in MCF-7 cell was induced by upregulation of proto-oncoprotein Bax and activation of Caspase-3 activated DNase. Although the derivatives induced apoptosis was associated with Bax protein levels, negligible Bcl-2 reduction was observed. Analysis of the data suggests that the substituted oxadiazole derivatives exert antiproliferative action and growth inhibition on MCF-7 cells through apoptosis induction and that it may have anticancer properties valuable for application in drug products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chang JC (1998) A review of breast cancer chemoprevention. Biomed Pharmacother 52:133–136

    Article  PubMed  CAS  Google Scholar 

  2. Parker SL, Tong T, Bolden S, Wingo PA (1997) Cancer statistics. CA Cancer J Clin 47:5–27

    Article  PubMed  CAS  Google Scholar 

  3. Carolin KA, Pass HA (2000) Prevention of Breast cancer. Crit Rev Oncol Hematol 33:221–238

    Article  PubMed  CAS  Google Scholar 

  4. Khan MTH, Choudhari MI, Khan KM, Rani M, Atta-ur-Rahman (2005) Structure–activity relationships of tyrosinase inhibitory combinatorial library of 2, 5-disubstituted-1,3,4-oxadiazole analogues. Bioorg Med Chem 13:3385–3395

    Article  PubMed  CAS  Google Scholar 

  5. Holla BS, Gonsalves R, Shenoy S (2000) Synthesis and antibacterial studies of a new series of 1,2-bis(1,3, 4-oxadiazol-2-yl)ethanes and 1,2-bis(4-amino-1,2, 4-triazol-3-yl)ethanes. Eur J Med Chem 35:267–271

    Article  PubMed  CAS  Google Scholar 

  6. Sahin G, Palaska E, MelikeEkizoglu M, Ozalp M (2002) Synthesis and antimicrobial activity of some 1,3,4-oxadiazole derivatives. II Farmaco 57:539–545

    Article  CAS  Google Scholar 

  7. Macaev F, Rusu G, Pogrebnoi S, Gudima A, Stingaci E, Vlad L, Shvets N, Kandemirli F, Dimoglo A, Reynolds R (2005) Synthesis of novel 5-aryl-2-thio-1,3,4-oxadiazoles and the study of their structure-anti-mycobacterial activities. Bioorg Med Chem 13:4842–4850

    Article  PubMed  CAS  Google Scholar 

  8. Zou X, Zhang Z, Jin G (2002) Synthesis and biological activity of 1,3,4- oxadiazole-substituted pyridazinones. J Chem Res Synopses 2002:228–230

    Article  Google Scholar 

  9. Zou XJ, Lai LH, Jin GY, Zhang ZX (2002) Synthesis, fungicidal activity, and 3D-QSAR of pyridazinone-substituted 1,3,4-oxadiazoles and 1,3,4-thiadiazoles. J Agri Food Chem 50:3757–3760

    Article  CAS  Google Scholar 

  10. Burbuliene MM, Jakubkiene V, Mekuskiene G, Udrenaite E, Smicius R, Vainilavicius P (2004) Synthesis and anti-inflammatory activity of derivatives of 5-[(2- disubstitutedamino-6-methyl-pyrimidin-4-yl)-sulfanylmethyl]-3H-1,3,4-oxadiazole-2-thiones. II Farmaco 59:747–767

    Article  CAS  Google Scholar 

  11. Palaska E, Sahin G, Kelicen P, Durlu NT, Altinok G (2002) Synthesis and antimicrobial activity of some 1,3,4-oxadiazole derivatives. Farmaco 57:101–107

    Article  PubMed  CAS  Google Scholar 

  12. Amir M, Shikha K (2004) Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of some new 2-[(2,6-dichloroanilino) phenyl]acetic acid derivatives. Eur J Med Chem 39:535–545

    Article  PubMed  CAS  Google Scholar 

  13. Zarghi A, Sayyed A, Tabatabai M, Faizi A, Ahadian P, Navabi V, Zanganeh A, Shafiee A (2005) Synthesis and anticonvulsant activity of new 2-substituted-5-(2-benzyloxyphenyl)-1,3,4-oxadiazoles. Bioorg Med Chem Lett 15:1863–1865

    Article  PubMed  CAS  Google Scholar 

  14. Almasirad A, Sayyed A, Tabatabai M, Faizi A, Kebriaeezadeh N, Mehrabi A, Dalvandie A, Shafiee A (2004) Synthesis and anticonvulsant activity of new 2-substituted-5- [2-(2-fluorophenoxy)phenyl]-1,3,4-oxadiazoles and 1,2,4-triazoles. Bioorg Med Chem Lett 14:6057–6059

    Article  PubMed  CAS  Google Scholar 

  15. Zheng X, Li Z, Wang Y, Chen W, Huang O, Liu C, Song C (2003) Syntheses and insecticidal activities of novel 2,5-disubstituted 1,3,4-oxadiazoles. J Fluor Chem 123:163–169

    Article  CAS  Google Scholar 

  16. Meyer HR (1976) Chem Abstr 85 125807 [Swiss Patent, (1976), 577, 536]

  17. Hill J, in: Katritzky AR (Ed.) (1994) Comprehensive Heterocyclic Chemistry Pergamon Press, Oxford 427(4)

  18. Bold RJ, Termuhlen PM, McConkey DJ (1997) Apoptosis, cancer and cancer therapy. Surg Oncol 6:133–142

    Article  PubMed  CAS  Google Scholar 

  19. Kamesaki H (1998) Mechanisms involved in chemotherapy-induces apoptosis and their implications in cancer chemotherapy. Int J Hematol 68:29–43

    Article  PubMed  CAS  Google Scholar 

  20. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  PubMed  CAS  Google Scholar 

  21. Kroemer G, Petit P, Zamzami N, Vassiere JL, Mignotte B (1995) The biochemistry of programmed cell death. Fed Am Soc Exp Biol J 9:1277–1287

    CAS  Google Scholar 

  22. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  PubMed  CAS  Google Scholar 

  23. Wyllie AH (1987) Apoptosis: cell death in tissue regulation. J Pathol 153:313–316

    Article  PubMed  CAS  Google Scholar 

  24. Bortner CD, Oldenburg NBE, Cidlowsky JA (1995) The role of DNA fragmentation in apoptosis. Trends Cell Biol 5:21–26

    Article  PubMed  CAS  Google Scholar 

  25. Earnshaw WC (1995) nuclear changes in apoptosis. Curr Opin Cell Biol 7:337–343

    Article  PubMed  CAS  Google Scholar 

  26. Levenson AS, Jordan CV (1997) MCF-7: the first hormone-responsive breast cancer cell line. Cancer Res 57:3071–3078

    PubMed  CAS  Google Scholar 

  27. Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinodou D, Ali S, Nakshatri H (2001) Phosphatidyl-inositol/3-kinase/Akt-mediated activation of estrogen receptor α: a new model for anti-estrogen receptor resistance. J Biol Chem 276:9817–9824

    Article  PubMed  CAS  Google Scholar 

  28. Spencer CM, Faulds D (1994) Paclitaxel. A review of its pharmocodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs 48:794–847

    Article  PubMed  CAS  Google Scholar 

  29. Gaonkar SL, Rai KML, Prabhuswamy B (2006) Synthesis and antimicrobial studies of a new series of 2-{4-[2-(5-ethylpyridin-2-yl) ethoxy] phenyl}-5-substituted-1,3,4- oxadiazoles. Eur J Med Chem 41:841–846

    Article  PubMed  CAS  Google Scholar 

  30. Giridharan P, Somasundaram ST, Perumal K, Vishwakarma NP, Velmurugan R (2002) Novel substituted methylenedioxylignan suppresses proliferation of cancer cells by inhibiting telomerase and activation of c-myc and caspases leading to apoptosis. Br J Cancer 87:98–105

    Article  PubMed  CAS  Google Scholar 

  31. Srinivas G, Anto RJ, Srinivas P, Lakshmi SV, Senan PV, Karunagaran D (2003) Emodin induces apoptosis of human cervical cancer cells through Poly (ADP-Ribose) polymerase cleavage and activation of caspase-9. Eur J Pharmacol 473:117–125

    Article  PubMed  CAS  Google Scholar 

  32. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  33. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  PubMed  CAS  Google Scholar 

  34. Rao L, White E (1997) Bcl-2 and ICE family of apoptotic regulators: making a connection. Curr Opin Genet Dev 7:52–58

    Article  PubMed  CAS  Google Scholar 

  35. Jacobson MD, Raff MC (1995) Programmed cell death and Bcl-2 protection in very low oxygen. Nature 374:814–816

    Article  PubMed  CAS  Google Scholar 

  36. Jacobson MD, Burne JF, Raff MC (1994) Mechanisms of programmed cell death and Bcl-2 protection. Biochem Soc Trans 22:600–602

    PubMed  CAS  Google Scholar 

  37. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  PubMed  CAS  Google Scholar 

  38. Widlak P (2000) The DFF-40/CAD endonuclease and its role in apoptosis. Acta Biochim Pol 47(4):1037–1044

    PubMed  CAS  Google Scholar 

  39. Eamshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspase: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    Article  Google Scholar 

  40. Thornberry N, lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  PubMed  CAS  Google Scholar 

  41. Esposti MD (2002) The roles of Bid. Apoptosis 7:433–440

    Article  PubMed  CAS  Google Scholar 

  42. Korsmeyer SJ, Wei MC, Saito M, Wieler S, Oh J, Schlesinger PH (2000) Proapoptotic cascade activates Bid, which oligomerized BAK or Bax into pores that result in the release of cytochrome C. Cell Death Differ 7:1166–1173

    Article  PubMed  CAS  Google Scholar 

  43. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl-2 interacting protein, mediates cytochrome C release from mitochondria in response to activation of cell death receptors. Cell 94:481–490

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author (AK) thanks University Grant Commission (UGC), New Delhi, and the author (SSD) thanks Lady Tata Memorial Trust, Mumbai, India, for the financial support. The authors express their sincere gratitude to University of Mysore, Mysore, India for the laboratory facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharathi P. Salimath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., D’Souza, S.S., Gaonkar, S.L. et al. Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by a new series of substituted-1,3,4-oxadiazole derivatives. Invest New Drugs 26, 425–435 (2008). https://doi.org/10.1007/s10637-008-9116-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-008-9116-5

Keywords

Navigation