Skip to main content

Advertisement

Log in

PPAR-γ ligand promotes the growth of APC-mutated HT-29 human colon cancer cells in vitro and in vivo

  • SHORT REPORT
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

PPAR-γ has been known to induce suppression, differentiation and reversal of malignant changes in colon cancer in vitro. However, there are several reports that PPAR-γ ligands enhance colon polyp development in APCmin mice in vivo. These contradictory results have not yet been thoroughly explained. To explain the contradictory results, we analyzed the effects of different concentrations of the PPAR-γ agonist, 15-deoxy-D12, 14-prostaglandin (15-d Δ PGJ2) and pioglitazone, on APC gene-mutated colon cancer cell lines (HT-29). We measured cell growth and suppression by cell count and MTT assay and analyzed the expression of β-catenin and c-Myc protein by Western blot. In addition, we inoculated HT-29 cells into APCmin mice to compare tumor size. High concentrations (10–100 μM/L 15-d Δ PGJ2 and pioglitazone) of PPAR-γ ligand suppressed growth, while low concentrations (0.01–1 μM/L 15-d Δ PGJ2 and pioglitazone) of PPAR-γ ligand promoted growth. In particular, the effects of 0.1 μM/L 15-d Δ PGJ2 and pioglitazone on cell growth were statistically significant (P = 0.003, P = 0.001, respectively). Tumor growth was associated with an increase in β-catenin and c-Myc expression. The growth of xenograft tumors was greater in PPAR-γ ligand-treated mice than in control mice (control vs day 14: P = 0.024, control vs day 28: P = 0.007). The expression of β-catenin and c-Myc protein were also elevated in PPAR-γ-treated mouse tissues. PPAR-γ ligand can promote the growth of APC-mutated HT-29 colon cancer cells in vitro and in vivo. In addition, the tumor promoting effect seems to be associated with an increase in β-catenin and c-Myc expression. We think that well-controlled clinical trials should be conducted to confirm our results and to verify clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Rosen ED, Spiegelman BM (2001) PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem 276:37731–37734

    Article  PubMed  CAS  Google Scholar 

  2. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM (1995) 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83:803–812

    Article  PubMed  CAS  Google Scholar 

  3. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 270:12953–12956

    Article  PubMed  CAS  Google Scholar 

  4. Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79:1147–1156

    Article  PubMed  CAS  Google Scholar 

  5. Kato M, Kusumi T, Tsuchida S, Tanaka M, Sasaki M, Kudo H (2004) Induction of differentiation and peroxisome proliferator-activated receptor gamma expression in colon cancer cell lines by troglitazone. J Cancer Res Clin Oncol 130:73–79

    Article  PubMed  CAS  Google Scholar 

  6. Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB, Holden SA, Chen LB, Singer S, Fletcher C, Spiegelman BM (1998) Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med 4:1046–1052

    Article  PubMed  CAS  Google Scholar 

  7. Shimada T, Kojima K, Yoshiura K, Hiraishi H, Terano A (2002) Characteristics of the peroxisome proliferator activated receptor gamma (PPARgamma) ligand induced apoptosis in colon cancer cells. Gut 50:658–664

    Article  PubMed  CAS  Google Scholar 

  8. Lefebvre AM, Chen I, Desreumaux P, Najib J, Fruchart JC, Geboes K, Briggs M, Heyman R, Auwerx J (1998) Activation of the peroxisome proliferator-activated receptor gamma promotes the development of colon tumors in C57BL/6J−APCMin/+mice. Nat Med 4:1053–1057

    Article  PubMed  CAS  Google Scholar 

  9. Saez E, Tontonoz P, Nelson MC, Alvarez JG, Ming UT, Baird SM, Thomazy VA, Evans RM (1998) Activators of the nuclear receptor PPARgamma enhance colon polyp formation. Nat Med 4:1058–1061

    Article  PubMed  CAS  Google Scholar 

  10. Yang K, Fan KH, Lamprecht SA, Edelmann W, Kopelovich L, Kucherlapati R, Lipkin M (2005) Peroxisome proliferator-activated receptor gamma agonist troglitazone induces colon tumors in normal C57BL/6J mice and enhances colonic carcinogenesis in Apc1638 N/+Mlh1+/− double mutant mice. Int J Cancer 116:495–499

    Article  PubMed  CAS  Google Scholar 

  11. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790

    Article  PubMed  CAS  Google Scholar 

  12. Karim R, Tse G, Putti T, Scolyer R, Lee S (2004) The significance of the Wnt pathway in the pathology of human cancers. Pathology 36:120–128

    Article  PubMed  CAS  Google Scholar 

  13. Morin PJ, Vogelstein B, Kinzler KW (1996) Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci USA 93:7950–7954

    Article  PubMed  CAS  Google Scholar 

  14. Potter JD (1995) Risk factors for colon neoplasia—epidemiology and biology. Eur J Cancer 31A:1033–1038

    Article  PubMed  CAS  Google Scholar 

  15. Wasan HS, Novelli M, Bee J, Bodmer WF (1997) Dietary fat influences on polyp phenotype in multiple intestinal neoplasia mice. Proc Natl Acad Sci USA 94:3308–3313

    Article  PubMed  CAS  Google Scholar 

  16. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci USA 94:4318–4323

    Article  PubMed  CAS  Google Scholar 

  17. Fujita Y, Yamada Y, Kusama M, Yamauchi T, Kamon J, Kadowaki T, Iga T (2003) Sex differences in the pharmacokinetics of pioglitazone in rats. Comp Biochem Physiol C Toxicol Pharmacol 136:85–94

    Article  PubMed  Google Scholar 

  18. Hanefeld M (2001) Pharmacokinetics and clinical efficacy of pioglitazone. Int J Clin Pract 121(Suppl):19–25

    CAS  Google Scholar 

  19. Polakis P (1999) The oncogenic activation of beta-catenin. Curr Opin Genet Dev 9:15–21

    Article  PubMed  CAS  Google Scholar 

  20. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B, Clevers H (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 275:1784–1787

    Article  PubMed  CAS  Google Scholar 

  21. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  PubMed  CAS  Google Scholar 

  22. Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426

    Article  PubMed  CAS  Google Scholar 

  23. Jansson EA, Are A, Greicius G, Kuo IC, Kelly D, Arulampalam V, Pettersson S (2005) The Wnt/beta-catenin signaling pathway targets PPARgamma activity in colon cancer cells. Proc Natl Acad Sci USA 102:1460–1465

    Article  PubMed  CAS  Google Scholar 

Download references

This work was supported by a Korea University Grant, Ministry of Health and Welfare, Republic of Korea (01-PG3-PG6-01GN07-0004) and The Post-Brain Korea 21 Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.H. Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, I., Kim, Y., Kim, J. et al. PPAR-γ ligand promotes the growth of APC-mutated HT-29 human colon cancer cells in vitro and in vivo. Invest New Drugs 26, 283–288 (2008). https://doi.org/10.1007/s10637-007-9108-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-007-9108-x

Keywords

Navigation