Skip to main content

Advertisement

Log in

The combination of gamma ionizing radiation and 8-Cl-cAMP induces synergistic cell growth inhibition and induction of apoptosis in human prostate cancer cells

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The antiproliferative and cytotoxic potential of the nucleotide analog 8-Cl-cAMP was tested in PC-3 and DU145 metastatic human prostate cancer cells. The drug was examined as the only therapeutic agent and in combination with ionizing irradiation (IR). Highly synergistic effects of IR and 8-Cl-cAMP were observed in both cell lines when examined by the MTT viability and BrdU proliferation assays. The combination of IR and 8-Cl-cAMP at clinically relevant doses exerted substantial growth inhibition. The combination of IR and 8-Cl-cAMP caused a significant disturbance in the distribution of cell cycle phases. Cell cycle arrest in the sub-G0/G1 phase predominated in both cell lines. The most striking observation was a significant increase in apoptotic PC-3 and DU145 cells. The DU145 cells were three times more sensitive to the combined treatment than PC-3 cells. The initial resistance to IR-induced apoptosis in these p53-deficient prostate cancer cell lines was overcome through an alternative proapoptotic pathway induced by 8-Cl-cAMP. Considering the low effective doses of treatments, improved tumor eradication rates and minimal undesirable side effects, the combination of IR and 8-Cl-cAMP could be the therapy of choice in treating prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Denis LJ, Griffiths K (2000) Endocrine treatment of prostate cancer. Semin Surg Oncol 18:52–74

    Article  PubMed  CAS  Google Scholar 

  2. Bubley GJ, Balk GP (1996) Treatment of androgen-independent prostate cancer. Oncologist 1:30–35

    PubMed  Google Scholar 

  3. Huggins C, Hodges CV (1941) Studies on prostate cancer. I. The effect of castration of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1:293–297

    CAS  Google Scholar 

  4. Denis LJ, Carneiro de Moura JL, Bono A, Sylvester R, Whelan P, Newling D, Depauw M (1993) Gosrelin acetate and flutamide versus bilateral orchiectomy: a phase III EORTC trial (30853). Urology 42:119–130

    Article  PubMed  CAS  Google Scholar 

  5. Janknegt RA, Abbou CC, Bartoletti R (1993) Orchiectomy and nilutamide or placebo as treatment of metastatic prostatic cancer in a multinational double-blind randomized trial. J Urol 149:77–83

    PubMed  CAS  Google Scholar 

  6. Fornace AJJ, Amundson SA, Bittner M, Myers TG, Meltzer P, Weinsten JN, Trent J (1999) The complexity of radiation stress responses: analysis by informatics and functional genomics approaches. Gene Expr 7:387–400

    PubMed  CAS  Google Scholar 

  7. Dandrea T, Hellmold H, Jonsson C, Zhivotovsky B, Hofer T, Warngard L, Cotgreave I (2004) The transcriptosomal response of human A549 lung cells to a hydrogen peroxide-generating system: relationship to DNA damage, cell cycle arrest, and caspase activation. Free Radic Biol Med 36:881–896

    Article  PubMed  CAS  Google Scholar 

  8. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389:300–305

    Article  PubMed  CAS  Google Scholar 

  9. Allen RG, Tresisni M (2000) Oxidative stress and gene regulation. Free Radic Biol Med 28:463–499

    Article  PubMed  CAS  Google Scholar 

  10. Lim SD, Sun C, Lambeth JD, Marshall F, Amin M, Chung L, Petros JA, Arnold RS (2005) Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate 62:200–207

    Article  PubMed  CAS  Google Scholar 

  11. Trzeciak AR, Nyaga SG, Jaruga P, Lohani A, Dizdaroglu M, Evans MK (2004) Cellular repair of oxidatively induced DNA base lesions is defective in prostate cancer cell lines, PC-3 and DU-145. Carcinogenesis 25:1359–1370

    Article  PubMed  CAS  Google Scholar 

  12. Oberley TD, Zhong W, Szweda LI, Oberley LW (2000) Localization of antioxidant enzymes and oxidative damage products in normal and malignant prostate epithelium. Prostate 44:144–155

    Article  PubMed  CAS  Google Scholar 

  13. Jung K, Seidel B, Rudolph B, Lein M, Cronauer MV, Henke W, Hampel G, Schnorr D, Loening SA (1997) Antioxidant enzymes in malignant prostate cell lines and in primary cultured prostatic cells. Free Radic Biol Med 23:127–133

    Article  PubMed  CAS  Google Scholar 

  14. Vucic V, Isenovic E, Adzic M, Ruzdijić S, Radojcic MB (2006) Antiproliferative and cytotoxic effects of gamma-radiation on DU-145 human prostate cancer cell line. Braz J Med Biol Res 39:227–236

    Article  PubMed  CAS  Google Scholar 

  15. Das KC, Guo XL, White CW (1998) Protein kinase Cdelta-dependent induction of manganese superoxide dismutase gene expression by microtubule-active anticancer drugs. J Biol Chem 273:34639–34645

    Article  PubMed  CAS  Google Scholar 

  16. Li JJ, Oberley LW, St. Clair DK (1995) Phenotypic changes induced in breast cancer cells by overexpression of manganese-containing superoxide dismutase. Oncogene 10:1989–2000

    PubMed  CAS  Google Scholar 

  17. Denmeade SR, Lin XS, Isaacs JT (1996) Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 28:251–265

    Article  PubMed  CAS  Google Scholar 

  18. Theyer G, Schirmbock M, Thalhammer T, Sherwood ER, Baumgartner G, Hamilton G (1993) Role of the MDR-1-encoded multiple drug resistance phenotype in prostate cancer cell lines. J Urol 150:1544–1547

    PubMed  CAS  Google Scholar 

  19. Catalona J (1994) Management of cancer of the prostate. N Engl J Med 331:996–1004

    Article  PubMed  CAS  Google Scholar 

  20. Yan SX, Ejima Y, Sasaki R, Zheng SS, Demizu Y, Soejima T, Sugimura K (2004) Combination of genistein with ionizing radiation on androgen-independent prostate cancer cells. Asian J Androl 6:285–290

    PubMed  CAS  Google Scholar 

  21. Cho-Chung YS, Clair T (1993) The regulatory subunits of the cAMP-dependent protein kinase as a target for chemotherapy of cancer and other dysfunctional-related diseases. Pharmacol Ther 60:265–288

    Article  PubMed  CAS  Google Scholar 

  22. Rohlff C, Clair T, Cho-Chung YS (1993) 8-Cl-cAMP induces truncation and down-regulation of the RI α subunits and up-regulation of RII β subunit of cAMP-dependent protein kinase leading to type II holoenzyme-dependent growth inhibition and differentiationof HL-60 leukemia cells. J Biol Chem 268:5774–5782

    PubMed  CAS  Google Scholar 

  23. Ally S, Clair T, Katsaros D, Tortora G, Yokozaki H, Finch RA, Avery TL, Cho-Chung YS (1989) Inhibition of growth and modulation of gene expression in human lung carcinoma in athymic mice by site-selective 8-Cl-cyclic adenosine monophosphate. Cancer Res 49:5650–5655

    PubMed  CAS  Google Scholar 

  24. McDaid HM, Johnston PG (1999) Synergistic interaction between paclitaxel and 8-chloro-adenosine 3′,5′-monophosphate in human ovarian carcinoma cell lines. Clin Cancer Res 5:215–220

    PubMed  CAS  Google Scholar 

  25. Grbovic O, Jovic V, Ruzdijic S, Pejanovic V, Rakic L, Kanazir S (2002) 8-Cl-cAMP affects glioma cell-cycle kinetics and selectively induces apoptosis. Cancer Invest 20:972–982

    Article  PubMed  CAS  Google Scholar 

  26. Juranic Z, Radulovic S, Joksimovic J, Juranic I (1998) The mechanism of 8-Cl-cAMP action. J Exp Clin Cancer Res 17:269–275

    PubMed  CAS  Google Scholar 

  27. Tortora G, Ciardiello F, Pepe S, Tagliaferri P, Ruggiero A, Bianco C, Guarrasi R, Miki K, Bianco AR (1995) Phase I clinical study with 8-chloro-cAMP and evaluation of immunological effects in cancer patients. Clin Cancer Res 1:377–384

    PubMed  CAS  Google Scholar 

  28. Schwede F, Maronde E, Genieser HG, Jastorff B (2000) Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol Ther 87:199–226

    Article  PubMed  CAS  Google Scholar 

  29. Camichael J, de Graf VJ, Gazdar AF, Minna SD, Michell JB (1987) Evaluation of tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47:936–942

    Google Scholar 

  30. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocite apoptosis by propidium iodate staining and flow-cyometry. J Immunol Methods 139:271–279

    Article  PubMed  CAS  Google Scholar 

  31. Chou TC, Talalay P (1984) Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  PubMed  CAS  Google Scholar 

  32. Waldman T, Zhang Y, Dillehay L, Yu J, Kinzler K, Vogelstein B, Williams J (1997) Cell-cycle arrest versus cell death in cancer therapy. Nat Med 3:1034–1036

    Article  PubMed  CAS  Google Scholar 

  33. Tortora G, di Isernia G, Sandomenico C, Bianco R, Pomatico G, Pepe S, Bianco AR, Ciardiello F (1997) Synergistic inhibition of growth and induction of apoptosis by 8-chloro-cAMP and paclitaxel or cisplatin in human cancer cells. Cancer Res 57:5107–5111

    PubMed  CAS  Google Scholar 

  34. Smorenburg CH, Sparreboom A, Bontenbal M, Verweij J (2001) Combination chemotherapy of taxanes and antimetabolites: its use and limitations. Europ J Cancer 37:2310–2323

    Article  CAS  Google Scholar 

  35. VanBokhoven A, Varella-Garcia M, Korch C, Hessels D, Miller GJ (2001) Widely used prostate carcinoma cell lines share common origins. Prostate 47:36–51

    Article  CAS  Google Scholar 

  36. Srivastava RK, Srivastava AR, Cho-Chung YS (1998) Synergistic effects of 8-chlorocyclic-AMP and retinoic acid on induction of apoptosis in Ewing’s sarcoma CHP-100 cells. Clin Cancer Res 4:755–761

    PubMed  CAS  Google Scholar 

  37. Jankovic D, Pesic M, Markovic J, Kanazir S, Markovic I, Rakic L, Ruzdijic S (2006) The combination of sulfinosine and 8-Cl-cAMP induces synergistic cell growth inhibition of the human neuroblastoma cell line in vitro. Invest New Drugs 24:15–24

    Article  PubMed  CAS  Google Scholar 

  38. Blank KR, Rudolts MS, Kao GD, Muschel RJ, McKenna GW (1997) The molecular regulation of apoptosis and implications for radiation oncology. Int J Radiat Biol 71:455–466

    Article  PubMed  CAS  Google Scholar 

  39. Niciforovic A, Adzic M, Spasic S, Radojcic MB (2007) Antitumor effects of a natural anthracycline analog (Aloin) involve altered activity of antioxidant enzymes in HeLaS3 cells. Cancer Biol Ther 6:8, e1–e6

    Google Scholar 

  40. Yount GL, Hass-Kogan DA, Levine KS, Aldape KD, Israel A (1998) Ionizing radiation inhibits chemotherapy-induced apoptosis in cultured glioma cells: implications for combined modality therapy. Cancer Res 58:3819–3825

    PubMed  CAS  Google Scholar 

  41. Hei TK, Piao CQ, Geard CR, Hall EJ (1994) Taxol and ionizing radiation interaction and mechanisms. Int J Radiat Oncol Biol Phys 29:267–271

    PubMed  CAS  Google Scholar 

  42. Dimon-Gadal S, Gerbaud P, Keryer G, Anderson W, Evain-Brion D (1998) In vitro effects of oxygen-derived free radicals on type I and type II cAMP-dependent protein kinases. J Biol Chem 273:22833–22840

    Article  PubMed  CAS  Google Scholar 

  43. Ahn YH, Jung JM, Hong SH (2005) 8-Chloro-cyclic AMP-induced growth inhibition and apoptosis is mediated by p38 mitogen-activated protein kinase activation in HL60 cells. Cancer Res 65:4896–4901

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was funded by the Ministry of Science, Republic of Serbia, projects 143009B and 143042B. Vesna Pesic, PhD is gratefully acknowledged for her help with the statistical analysis of data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabera Ruždijić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vučić, V., Nićiforović, A., Adžić, M. et al. The combination of gamma ionizing radiation and 8-Cl-cAMP induces synergistic cell growth inhibition and induction of apoptosis in human prostate cancer cells. Invest New Drugs 26, 309–317 (2008). https://doi.org/10.1007/s10637-007-9101-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-007-9101-4

Keywords

Navigation