Skip to main content

Atypical cytostatic mechanism of N-1-sulfonylcytosine derivatives determined by in vitro screening and computational analysis


We have previously shown that N-1-sulfonylpyrimidine derivatives have strong antiproliferative activity on human tumor cell lines, whereby 1-(p-toluenesulfonyl)cytosine showed good selectivity with regard to normal cells and was easily synthesized on a large scale. In the present work we have used an interdisciplinary approach to elucidate the compounds’ mechanistic class. An augmented number of cell lines (11) has allowed a computational search for compounds with similar activity profiles and/or mechanistic class by integrating our data with the comprehensive DTP–NCI database. We applied supervised machine learning methodology (Random Forest classifier), which offers information complementary to unsupervised algorithms commonly used for analysis of cytostatic activity profiles, such as self-organizing maps. The computational results taken together with cell cycle perturbation and apoptosis analysis of the cell lines point to an unusual mechanism of cytostatic action, possibly a combination of nucleic acid antimetabolite activity and a novel molecular mechanism.

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Erhardt PW (2002) Medicinal chemistry in the new millennium. A glance into the future. Pure Appl Chem 74:703–785

    Article  CAS  Google Scholar 

  2. 2.

    Oprea TI, Gottfries J (2001) Chemography: the art of navigating in chemical space. J Com Chem 3:157–166

    Article  CAS  Google Scholar 

  3. 3.

    MacCoss M, Robins MJ (1990) In: Wilman DEV (ed) Chemistry of antitumor agents. Blackie and Son, Glasgow, Scotland, p 261

  4. 4.

    Robins RK, Kirin GD (1990) In: Wilman DEV (ed) Chemistry of antitumor agents. Blackie and Son, Glasgow, Scotland, p 299

  5. 5.

    Robins RK, Revankar GR (1988) In: De Clercq E, Walker RT (eds) Antiviral drug development. Plenum, New York, p 11

    Google Scholar 

  6. 6.

    Kašnar B, Krizmanić I, Žinić M (1997) Synthesis of the sulfonylpirimidine derivatives as a new type of sulfonylcycloureas. Nucleosides Nucleotides 16:1067–1071

    Article  Google Scholar 

  7. 7.

    Žinić B, Krizmanić I, Vikić-Topić D, Žinić M (1999) 5-Bromo- and 5-iodo-N-1-sulfonylated cytosine derivatives. Exclusive formation of keto-imino tautomers. Croat Chem Acta 72:957–966

    Google Scholar 

  8. 8.

    Žinić B, Žinić M, Krizmanić I (2003) Synthesis of the sulfonylpyrimidine derivatives with anticancer activity. EP 0 877 022 B1

  9. 9.

    Slišković DR, Krause BR, Bocan TMA (1999) In: Doherty AM, Greenlee W, Hagmann WK (eds) Annual Reports in Medicinal Chemistry 34:101–110

    Google Scholar 

  10. 10.

    Melander A (1996) Oral antidiabetic drugs: an overview. Diabet Med 13:S143–S147

    PubMed  CAS  Google Scholar 

  11. 11.

    Furlong ET, Burkhardt MR, Gates PM, Werner SL, Battaglin WA (2000) Routine determination of sulfonylurea, imidazolinone, and sulfonamide herbicides at nanogram-per-liter concentrations by solid-phase extraction and liquid chromatography/mass spectrometry. Sci Total Environ 248:135–146

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Houghton PJ, Sosinski J, Thakar JH, Boder GB, Grindey GB (1995) Characterization of the intracellular distribution and binding in human adenocarcinoma cells of N-(4-azidophenylsulfonyl)-N′-(4-chlorophenyl)urea (LY219703), a photoaffinity analogue of the antitumor diarylsulfonylurea sulofenur. Biochem Pharmacol 49:661–668

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Schultz RM, Merriman RL, Toth JE, Zimmermann JE, Hertel LW, Andis SL, Dudley DE, Rutherford PG, Tanzer LR, Grindey GB (1993) Evaluation of new anticancer agents against the MIA PaCa-2 and PANC-1 human pancreatic carcinoma xenografts. Oncol Res 5:223–228

    PubMed  CAS  Google Scholar 

  14. 14.

    Mohamadi F, Spees MM, Grindey GB (1992) Sulfonylureas: a new class of cancer chemotherapeutic agents. J Med Chem 35:3012–3016

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Morre DJ, Wu LY, Morre DM (1998) Response of a cell-surface NADH oxidase to the antitumor sulfonylurea N-(4-methylphenylsulfonyl)-N′-(4-chlorophenylurea) (LY181984) modulated by redox. Biochim Biophys Acta 1369:185–192

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Toth JE, Grindey GB, Ehlhardt WJ, Ray JE, Boder GB, Bewley JR, Klingerman KK, Gates SB, Rinzel SM, Schultz RM, Weir LC, Worzalla JF (1997) Sulfonimidamide analogs of oncolytic sulfonylureas. J Med Chem 40:1018–1025

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Glavaš-Obrovac L, Karner I, Žinić B, Pavelić K (2001) Antineoplastic activity of novel N-1-sulfonypyrimidine derivatives. Anticancer Res 21:1979–1986

    PubMed  Google Scholar 

  18. 18.

    Glavaš-Obrovac L, Karner I, Štefanić M, Kašnar-Šamprec J, Žinić B (2005) Metabolic effects of novel N-1-sulfonylpyrimidine derivatives on human colon carcinoma cells. Farmaco 60:479–483

    PubMed  Article  Google Scholar 

  19. 19.

    Boyd MR, Paull KD (1995) Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev Res 34:91–109

    Article  CAS  Google Scholar 

  20. 20.

    Martirosyan A, Gunar VI, Zav’yalov SI (1970) Tosylation of nitrogenous components of nucleic acids. Akad Nauk SSSR, Ser Khim 8:1841–1844

    Google Scholar 

  21. 21.

    Kaldrikyn MA, Geboyan VA, Ter-Yakharyn YZ, Paronikyan RV, Garibdzhanyan BT, Stepanyan GM, Paronikyan GM (1986) Synthesis and biological activity of N′-4-alkoxybenzenesulfonyl-5-halouracils. Khim Farm Zh 20:928–932

    Google Scholar 

  22. 22.

    Tada M (1975) Antineoplastic agents. Synthesis of some 1-substituted 5-fluorouracil derivatives. Chem Lett 4:129–130

    Article  Google Scholar 

  23. 23.

    Kašnar-Šamprec J, Glavaš-Obrovac L, Pavlak M, Mihaljević I, Mrljak V, Štambuk N, Konjevoda P, Žinić B (2005) Synthesis, spectroscopic characterization and biological activity of N-1-sulfonylcytosine derivatives. Croat Chem Acta 78:261–267

    Google Scholar 

  24. 24.

    Breiman L (2001) Random Forests. Mach Learn 45:5–32

    Article  Google Scholar 

  25. 25.

    Kohonen T (1990) The self-organizing map. Proc IEEE 78:1464

    Article  Google Scholar 

  26. 26.

    Supek F: i2SOM (computer program).∼fran/i2SOM/

  27. 27.

    Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:5116–5121

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Paull KD, Shoemaker RH, Hodes L, Monks A, Scudiero DA, Rubinstein L, Plowman J, Boyd MR (1989) Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and Compare algorithm. J Natl Cancer Inst 81:1088–1092

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Rabow AA, Shoemaker RH, Sausville EA, Covell DG (2002) Mining the National Cancer Institute’s tumor-screening database: identification of compounds with similar cellular activities. J Med Chem 45:818–840

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Statist 6:65–70

    Google Scholar 

  31. 31.

    Chua MS, Kashiyama E, Bradshaw TD, Stinson SF, Brantley E, Sausville EA, Stevens MF (2000) Role of Cyp1A1 in modulation of antitumor properties of the novel agent 2-(4-amino-3-methylphenyl)benzothiazole (DF 203, NSC 674495) in human breast cancer cells. Cancer Res 60:5196–5203

    PubMed  CAS  Google Scholar 

  32. 32.

    Monks A, Harris E, Hose C, Connelly J, Sausville EA (2003) Genotoxic profiling of MCF-7 breast cancer cell line elucidates gene expression modifications underlying toxicity of the anticancer drug 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole. Mol Pharmacol 63:766–772

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Qi Y, Bar-Joseph Z, Klein-Seetharaman J (2006) Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins 63:490–500

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Topić G, Šmuc T (2007) PARF—Parallel Random Forest algorithm (computer program).

  35. 35.

    Capranico G, Binaschi M (1998) DNA sequence selectivity of topoisomerases and topoisomerase poisons. Biochim Biophys Acta 1400:185–194

    PubMed  CAS  Google Scholar 

  36. 36.

    Grem JL (2000) 5-Fluorouracil: forty-plus and still ticking. A review of its preclinical and clinical development. Invest New Drugs 18:299–313

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Koch-Paiz CA, Amundson SA, Bittner ML, Meltzer PS, Fornace AJ, Jr (2004) Functional genomics of UV radiation responses in human cells. Mutat Res 549:65–78

    PubMed  CAS  Google Scholar 

  38. 38.

    Marchal JA, Boulaiz H, Suarez I, Saniger E, Campos J, Carrillo E, Prados J, Gallo MA, Espinosa A, Aranega A (2004) Growth inhibition, G(1)-arrest, and apoptosis in MCF-7 human breast cancer cells by novel highly lipophilic 5-fluorouracil derivatives. Invest New Drugs 22:379–389

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Marjanović M, Kralj M, Supek F, Frkanec L, Piantanida I, Šmuc T, Tušek-Božić L (2007) Antitumor potential of crown ethers: structure–activity relationships, cell cycle disturbances, and cell death studies of a series of ionophores. J Med Chem 50:1007–1018

    PubMed  Article  Google Scholar 

  40. 40.

    Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, San Francisco

    Google Scholar 

  41. 41.

    Covell DG, Wallqvist A, Huang R, Thanki N, Rabow AA, Lu XJ (2005) Linking tumor cell cytotoxicity to mechanism of drug action: an integrated analysis of gene expression, small-molecule screening and structural databases. Proteins 59:403–433

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. Chapman & Hall, New York

    Google Scholar 

  43. 43.

    Quinlan JR (2006) C4.5: programs for machine learning. Morgan Kaufmann, San Francisco

Download references


This work was supported by the Rudjer Boskovic Institute’s spin-off company BioZyne d.o.o., and the Ministry of Science, Education and Sport of Croatia. We are very grateful to Dr. David Covell of the National Cancer Institute’s Developmental Therapeutics Program for supplying the data set with mechanistic classes of compounds.

Author information



Corresponding author

Correspondence to Biserka Žinić.

Additional information

Fran Supek and Marijeta Kralj contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Supek, F., Kralj, M., Marjanović, M. et al. Atypical cytostatic mechanism of N-1-sulfonylcytosine derivatives determined by in vitro screening and computational analysis. Invest New Drugs 26, 97–110 (2008).

Download citation


  • Nucleobases
  • Antitumor agents
  • In vitro screening
  • Bioinformatics
  • Random Forest