Skip to main content

Advertisement

Log in

A thermally targeted elastin-like polypeptide-doxorubicin conjugate overcomes drug resistance

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The ability of cancer cells to become simultaneously resistant to different drugs, a trait known as multidrug resistance, remains a major obstacle for successful anticancer therapy. One major mechanism of resistance involves cellular drug efflux by expression of P-glycoprotein (P-gp), a membrane transporter with a wide variety of substrates. Anthracyclines are especially prone to induction of resistance by the P-gp mechanism. P-gp mediated resistance is often confronted by use of P-gp inhibitors, synthesis of novel analogs, or conjugating drugs to macromolecular carriers in order to circumvent the efflux mechanism. In this report, the effect of free and Elastin-like polypeptide (ELP) bound doxorubicin (Dox) on the viability of sensitive (MES-SA and MCF-7) and multidrug resistant (MES-SA/Dx5 and NCI/ADR-RES) human carcinoma cells was studied in vitro. The resistant MES-SA/Dx5 cells demonstrated about 70 times higher resistance to free Dox than the sensitive MES-SA cells, and the NCI/ADR-RES cells were about 30 fold more resistant than the MCF-7 cells. However, the ELP-bound Dox was equally cytotoxic in both sensitive and resistant cell lines. The ELP-bound Dox was shown to accumulate in MES-SA/Dx5 cells, as opposed to free Dox, which was rapidly pumped out by the P-gp transporter. Since ELP is a thermally responsive carrier, the effect of hyperthermia on the cytotoxicity of the ELP-Dox conjugate was investigated. Both cytotoxicity and apoptosis were enhanced by hyperthermia in the Dox resistant cells. The results suggest that ELP-Dox conjugates may provide a means to thermally target solid tumors and to overcome drug resistance in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABC:

ATP binding cassette

AUC:

area under curve

BSA:

bovine serum albumin

Dnr:

daunorubicin

Dox:

doxorubicin

ELP:

elastin-like polypeptide

EPR:

enhanced permeability and retention

HPLC:

high pressure liquid chromatography

HPMA:

N-(2-hydroxypropyl)methacrylamide

MDR:

multidrug resistance

PBS:

phosphate buffered physiological saline

PE:

phycoerythrin

PFA:

paraformaldehyde

P-gp:

P-glycoprotein

Tt :

transition temperature

References

  1. Fojo AT, Menefee M (2005) Microtubule targeting agents: basic mechanisms of multidrug resistance (MDR). Semin Oncol 32(6–7):S3–S8

    Article  PubMed  CAS  Google Scholar 

  2. Beck WT, Danks MK, Wolverton JS, Granzen B, Chen M, Schmidt CA, Bugg BY, Friche E, Suttle DP (1993) Altered DNA topoisomerase II in multidrug resistance. Cytotechnology 11(2):115–119

    Article  PubMed  CAS  Google Scholar 

  3. Bosch TM, Meijerman I, Beijnen JH, Schellens JH (2006) Genetic polymorphisms of drug-metabolising enzymes and drug transporters in the chemotherapeutic treatment of cancer. Clin Pharmacokinet 45(3):253–85

    Article  PubMed  CAS  Google Scholar 

  4. Duvvuri M, Krise JP (2005) Intracellular drug sequestration events associated with the emergence of multidrug resistance: a mechanistic review. Front Biosci 10:1499–1509

    Article  PubMed  CAS  Google Scholar 

  5. Stein WD, Bates SE, Fojo T (2004) Intractable cancers: the many faces of multidrug resistance and the many targets it presents for therapeutic attack. Curr Drug Targets 5(4):333–346

    Article  PubMed  CAS  Google Scholar 

  6. Dano K (1973) Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim Biophys Acta 323(3):466–483

    Article  PubMed  CAS  Google Scholar 

  7. Willingham MC, Cornwell MM, Cardarelli CO, Gottesman MM, Pastan I (1986) Single cell analysis of daunomycin uptake and efflux in multidrug-resistant and -sensitive KB cells: effects of verapamil and other drugs. Cancer Res 46(11):5941–5946

    PubMed  CAS  Google Scholar 

  8. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219–234

    Article  PubMed  CAS  Google Scholar 

  9. Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455(1):152–162

    Article  PubMed  CAS  Google Scholar 

  10. Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  PubMed  CAS  Google Scholar 

  11. Raviv Y, Pollard HB, Bruggemann EP, Pastan I, Gottesman MM (1990) Photosensitized labeling of a functional multidrug transporter in living drug-resistant tumor cells. J Biol Chem 265(7):3975–3980

    PubMed  CAS  Google Scholar 

  12. Mickley LA, Spengler BA, Knutsen TA, Biedler JL, Fojo T (1997) Gene rearrangement: a novel mechanism for MDR-1 gene activation. J Clin Invest 99(8):1947–1957

    Article  PubMed  CAS  Google Scholar 

  13. Abolhoda A, Wilson AE, Ross H, Danenberg PV, Burt M, Scotto KW (1999) Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin. Clin Cancer Res 5(11):3352–3356

    PubMed  CAS  Google Scholar 

  14. Seelig A (1998) A general pattern for substrate recognition by P-glycoprotein. Eur J Biochem 251(1–2):252–261

    Article  PubMed  CAS  Google Scholar 

  15. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361–398

    Article  PubMed  CAS  Google Scholar 

  16. Ozben T (2006) Mechanisms and strategies to overcome multiple drug resistance in cancer. FEBS Lett 580(12):2903–2909

    Article  PubMed  CAS  Google Scholar 

  17. Harker WG, MacKintosh FR, Sikic BI (1983) Development and characterization of a human sarcoma cell line, MES-SA, sensitive to multiple drugs. Cancer Res 43(10):4943–4950

    PubMed  CAS  Google Scholar 

  18. Harker WG, Sikic BI (1985) Multidrug (pleiotropic) resistance in doxorubicin-selected variants of the human sarcoma cell line MES-SA. Cancer Res 45(9):4091–4096

    PubMed  CAS  Google Scholar 

  19. Borowski E, Bontemps-Gracz MM, Piwkowska A (2005) Strategies for overcoming ABC-transporters-mediated multidrug resistance (MDR) of tumor cells. Acta Biochim Pol 52(3):609–627

    PubMed  CAS  Google Scholar 

  20. Priebe W, Van NT, Burke TG, Perez-Soler R (1993) Removal of the basic center from doxorubicin partially overcomes multidrug resistance and decreases cardiotoxicity. Anticancer Drugs 4(1):37–48

    Article  PubMed  CAS  Google Scholar 

  21. Priebe W, Perez-Soler R (1993) Design and tumor targeting of anthracyclines able to overcome multidrug resistance: a double-advantage approach. Pharmacol Ther 60(2):215–234

    Article  PubMed  CAS  Google Scholar 

  22. Priebe W (1995) Mechanism of action-governed design of anthracycline antibiotics: a “turn-off/turn-on” approach. Curr Pharm Des 1:51–68

    CAS  Google Scholar 

  23. Consoli U, Priebe W, Ling YH, Mahadevia R, Griffin M, Zhao S, Perez-Soler R, Andreeff M (1996) The novel anthracycline annamycin is not affected by P-glycoprotein-related multidrug resistance: comparison with idarubicin and doxorubicin in HL-60 leukemia cell lines. Blood 88(2):633–644

    PubMed  CAS  Google Scholar 

  24. Krishna R, Mayer LD (1999) The use of liposomal anticancer agents to determine the roles of drug pharmacodistribution and P-glycoprotein (PGP) blockade in overcoming multidrug resistance (MDR). Anticancer Res 19(4B):2885–2891

    PubMed  CAS  Google Scholar 

  25. Vail DM, Amantea MA, Colbern GT, Martin FJ, Hilger RA, Working PK (2004) Pegylated liposomal doxorubicin: proof of principle using preclinical animal models and pharmacokinetic studies. Semin Oncol 31(6–13):16–35

    Article  PubMed  CAS  Google Scholar 

  26. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54(5):631–651

    Article  PubMed  CAS  Google Scholar 

  27. Mayer LD, Shabbits JA (2001) The role for liposomal drug delivery in molecular and pharmacological strategies to overcome multidrug resistance. Cancer Metastasis Rev 20(1–2):87–93

    Article  PubMed  CAS  Google Scholar 

  28. Minko T, Kopeckova P, Pozharov V, Kopecek J (1998) HPMA copolymer bound adriamycin overcomes MDR1 gene encoded resistance in a human ovarian carcinoma cell line. J Control Release 54(2):223–233

    Article  PubMed  CAS  Google Scholar 

  29. Ohkawa K, Hatano T, Yamada K, Joh K, Takada K, Tsukada Y, Matsuda M (1993) Bovine serum albumin-doxorubicin conjugate overcomes multidrug resistance in a rat hepatoma. Cancer Res 53(18):4238–4242

    PubMed  CAS  Google Scholar 

  30. Kopecek J, Kopeckova P, Minko T, Lu Z (2000) HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action. Eur J Pharm Biopharm 50(1):61–81

    Article  PubMed  CAS  Google Scholar 

  31. Kopecek J (2003) Smart and genetically engineered biomaterials and drug delivery systems. Eur J Pharm Sci 20(1):1–16

    Article  PubMed  CAS  Google Scholar 

  32. Cassidy J, Duncan R, Morrison GJ, Strohalm J, Plocova D, Kopecek J, Kaye SB (1989) Activity of N-(2-hydroxypropyl)methacrylamide copolymers containing daunomycin against a rat tumour model. Biochem Pharmacol 38(6):875–879

    Article  PubMed  CAS  Google Scholar 

  33. Maeda H, Seymour LW, Miyamoto Y (1992) Conjugates of anticancer agents and polymers: advantages of macromolecular therapeutics in vivo. Bioconjug Chem 3(5):351–362

    Article  PubMed  CAS  Google Scholar 

  34. Takakura Y, Fujita T, Hashida M, Sezaki H (1990) Disposition characteristics of macromolecules in tumor-bearing mice. Pharm Res 7(4):339–346

    Article  PubMed  CAS  Google Scholar 

  35. Yamaoka T, Tabata Y, Ikada Y (1994) Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci 83(4):601–606

    Article  PubMed  CAS  Google Scholar 

  36. Minko T, Kopeckova P, Kopecek J (1999) Comparison of the anticancer effect of free and HPMA copolymer-bound adriamycin in human ovarian carcinoma cells. Pharm Res 16(7):986–996

    Article  PubMed  CAS  Google Scholar 

  37. St’astny M, Strohalm J, Plocova D, Ulbrich K, Rihova B (1999) A possibility to overcome P-glycoprotein (PGP)-mediated multidrug resistance by antibody-targeted drugs conjugated to N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer carrier. Eur J Cancer 35(3):459–466

    Article  PubMed  CAS  Google Scholar 

  38. Ryser HJ, Shen WC (1978) Conjugation of methotrexate to poly(L-lysine) increases drug transport and overcomes drug resistance in cultured cells. Proc Natl Acad Sci U S A 75(8):3867–3870

    Article  PubMed  CAS  Google Scholar 

  39. Bidwell GL 3rd, Fokt I, Priebe W, Raucher D (2007) Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin. Biochem Pharmacol 73(5):620–631

    Article  PubMed  CAS  Google Scholar 

  40. Urry DW, Luan C-H, Parker TM, Gowda DC, Prasad KU, Reid MC, Safavy A (1991) Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity. J Am Chem Soc 113:4346–4348

    Article  CAS  Google Scholar 

  41. Urry DW (1992) Free energy transduction in polypeptides and proteins based on inverse temperature transitions. Prog Biophys Mol Biol 57(1):23–57

    Article  PubMed  CAS  Google Scholar 

  42. Raucher D, Chilkoti A (2001) Enhanced uptake of a thermally responsive polypeptide by tumor cells in response to its hyperthermia-mediated phase transition. Cancer Res 61(19):7163–7170

    PubMed  CAS  Google Scholar 

  43. Chilkoti A, Dreher MR, Meyer DE (2002) Design of thermally responsive, recombinant polypeptide carriers for targeted drug delivery. Adv Drug Deliv Rev 54(8):1093–1111

    Article  PubMed  CAS  Google Scholar 

  44. Dreher MR, Raucher D, Balu N, Michael Colvin O, Ludeman SM, Chilkoti A (2003) Evaluation of an elastin-like polypeptide-doxorubicin conjugate for cancer therapy. J Control Release 91(1–2):31–43

    Article  PubMed  CAS  Google Scholar 

  45. Liu W, Dreher MR, Furgeson DY, Peixoto KV, Yuan H, Zalutsky MR, Chilkoti A (2006) Tumor accumulation, degradation and pharmacokinetics of elastin-like polypeptides in nude mice. J Control Release 116(2):170–178

    Article  PubMed  CAS  Google Scholar 

  46. Meyer DE, Kong GA, Dewhirst MW, Zalutsky MR, Chilkoti A (2001) Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia. Cancer Res 61(4):1548–1554

    PubMed  CAS  Google Scholar 

  47. Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272(25):16010–16017

    Article  PubMed  CAS  Google Scholar 

  48. Massodi I, Bidwell GL, 3rd, Raucher D (2005) Evaluation of cell penetrating peptides fused to elastin-like polypeptide for drug delivery. J Control Release 108(2–3):396–408

    Article  PubMed  CAS  Google Scholar 

  49. Duncan R, Cable HC, Lloyd JB, Rejmanova P, Kopecek J (1982) Degradation of side-chains of N-(2-hydroxypropyl)methacrylamide copolymers by lysosomal thiol-proteinases. Biosci Rep 2(12):1041–1046

    Article  PubMed  CAS  Google Scholar 

  50. Fairchild CR, Ivy SP, Kao-Shan CS, Whang-Peng J, Rosen N, Israel MA, Melera PW, Cowan KH, Goldsmith ME (1987) Isolation of amplified and overexpressed DNA sequences from adriamycin-resistant human breast cancer cells. Cancer Res 47(19):5141–5148

    PubMed  CAS  Google Scholar 

  51. Lee JS, Paull K, Alvarez M, Hose C, Monks A, Grever M, Fojo AT, Bates SE (1994) Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen. Mol Pharmacol 46(4):627–638

    PubMed  CAS  Google Scholar 

  52. Wu L, Smythe AM, Stinson SF, Mullendore LA, Monks A, Scudiero DA, Paull KD, Koutsoukos AD, Rubinstein LV, Boyd MR (1992) Multidrug-resistant phenotype of disease-oriented panels of human tumor cell lines used for anticancer drug screening. Cancer Res 52(11):3029–3034

    PubMed  CAS  Google Scholar 

  53. Scudiero DA, Monks A, Sausville EA (1998) Cell line designation change: multidrug-resistant cell line in the NCI anticancer screen. J Natl Cancer Inst 90(11):862

    PubMed  CAS  Google Scholar 

  54. Bidwell GL, 3rd, Raucher D (2005) Application of thermally responsive polypeptides directed against c-Myc transcriptional function for cancer therapy. Mol Cancer Ther 4(7):1076–1085

    Article  PubMed  CAS  Google Scholar 

  55. Daniell H, Guda C, McPherson DT, Zhang X, Xu J, Urry DW (1997) Hyperexpression of a synthetic protein-based polymer gene. Methods Mol Biol 63:359–371

    PubMed  CAS  Google Scholar 

  56. Hovorka O, St’astny M, Etrych T, Subr V, Strohalm J, Ulbrich K, Rihova B (2002) Differences in the intracellular fate of free and polymer-bound doxorubicin. J Control Release 80(1–3):101–117

    Article  PubMed  CAS  Google Scholar 

  57. Averill DA, Su C (1999) Sensitization to the cytotoxicity of adriamycin by verapamil and heat in multidrug-resistant Chinese hamster ovary cells. Radiat Res 151(6):694–702

    Article  PubMed  CAS  Google Scholar 

  58. Duncan R, Coatsworth JK, Burtles S (1998) Preclinical toxicology of a novel polymeric antitumour agent: HPMA copolymer-doxorubicin (PK1). Hum Exp Toxicol 17(2):93–104

    Article  PubMed  CAS  Google Scholar 

  59. Yeung TK, Hopewell JW, Simmonds RH, Seymour LW, Duncan R, Bellini O, Grandi M, Spreafico F, Strohalm J, Ulbrich K (1991) Reduced cardiotoxicity of doxorubicin given in the form of N-(2-hydroxypropyl)methacrylamide conjugates: an experimental study in the rat. Cancer Chemother Pharmacol 29(2):105–111

    Article  PubMed  CAS  Google Scholar 

  60. Omelyanenko V, Kopeckova P, Gentry C, Kopecek J (1998) Targetable HPMA copolymer-adriamycin conjugates. Recognition, internalization, and subcellular fate. J Control Release 53(1–3):25–37

    Article  PubMed  CAS  Google Scholar 

  61. Vicent MJ, Duncan R (2006) Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol 24(1):39–47

    Article  PubMed  CAS  Google Scholar 

  62. Shiah JG, Dvorak M, Kopeckova P, Sun Y, Peterson CM, Kopecek J (2001) Biodistribution and antitumour efficacy of long-circulating N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin conjugates in nude mice. Eur J Cancer 37(1):131–139

    Article  PubMed  CAS  Google Scholar 

  63. Loadman PM, Bibby MC, Double JA, Al-Shakhaa WM, Duncan R (1999) Pharmacokinetics of PK1 and doxorubicin in experimental colon tumor models with differing responses to PK1. Clin Cancer Res 5(11):3682–3688

    PubMed  CAS  Google Scholar 

  64. Meyer DE, Shin BC, Kong GA, Dewhirst MW, Chilkoti A (2001) Drug targeting using thermally responsive polymers and local hyperthermia. J Control Release 74(1–3):213–224

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Wendy Will Case Cancer Fund grant to Drazen Raucher and The Welch Foundation (Houston, TX) grant to Waldemar Priebe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drazen Raucher.

Additional information

Novelty and Impact: This work represents the first demonstration that ELP-based drug delivery vectors can bypass the P-gp resistance mechanism. This manuscript lays the groundwork for the use of ELP for thermally targeted drug delivery to drug resistant solid tumors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bidwell, G.L., Davis, A.N., Fokt, I. et al. A thermally targeted elastin-like polypeptide-doxorubicin conjugate overcomes drug resistance. Invest New Drugs 25, 313–326 (2007). https://doi.org/10.1007/s10637-007-9053-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-007-9053-8

Keywords

Navigation