Skip to main content

Phase I dose escalation clinical trial of phenylbutyrate sodium administered twice daily to patients with advanced solid tumors

Abstract

Background: Phenylbutyrate (PBA), and its metabolite phenylacetate (PAA), induce growth inhibition and cellular differentiation in multiple tumor models. However, despite their potential anti-cancer properties, several pharmacodynamic aspects remain unknown.

Methods: We conducted a dose escalating trial to evaluate twice-daily intravenous PBA infusions for two consecutive weeks (Monday through Friday) every month at five dose levels (60–360 mg/kg/day). Twenty-one patients with the following malignancies were treated: colon carcinoma 4, non-small cell lung carcinoma 4; anaplastic astrocytoma 3, glioblastoma multiforme 3, bladder carcinoma 2, sarcoma 2, and ovarian carcinoma, rectal hemangiopericytoma, and pancreatic carcinoma 1 each.

Results: Conversion of PBA to PAA and phenylacetylglutamine (PAG) was documented without catabolic saturation. Plasma content of PBA ≥1 mM was documented for only 3 h following each dose at the top two dosages. The therapy was well tolerated overall. Common adverse effects included grade 1 nausea/vomiting, fatigue, and lightheadedness. Dose limiting toxicities were short-term memory loss, sedation, confusion, nausea, and vomiting. Two patients with anaplastic astrocytoma and a patient with glioblastoma remained stable without tumor progression for 5, 7, and 4 months respectively.

Conclusions: Administration of PBA in a twice-daily infusion schedule is safe. The maximum tolerated dose is 300 mg/kg/day. Study designs with more convenient treatment schedules and specific molecular correlates may help to further delineate the mechanism of action of this compound. Future studies evaluating PBA's ability to induce histone acetylation and cell differentiation alone or in combination with other anti-neoplastics are recommended.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Kritchevsky D, Moyer AW, Tesar WC, McCandless RF, Logan JB, Brown RA, et al (1956) The effect of sodium 2-phenylbutyrate in experimental atherosclerosis. Angiology 7(2):156–158

    PubMed  CAS  Google Scholar 

  2. Brusilow SW (1991) Phenylacetylglutamine may replace urea as a vehicle for waste nitrogen excretion. Pediatr Res 29(2):147–150

    PubMed  CAS  Google Scholar 

  3. Brusilow SW, Danney M, Waber LJ, Batshaw M, Burton B, Levitsky L, et al (1984) Treatment of episodic hyperammonemia in children with inborn errors of urea synthesis. N Engl J Med 310(25):1630–1634

    PubMed  CAS  Article  Google Scholar 

  4. Samid D, Shack S, Sherman LT (1992) Phenylacetate: a novel nontoxic inducer of tumor cell differentiation. Cancer Res 52(7):1988–1992

    PubMed  CAS  Google Scholar 

  5. DiGiuseppe JA, Weng LJ, Yu KH, Fu S, Kastan MB, Samid D, et al (1999) Phenylbutyrate-induced G1 arrest and apoptosis in myeloid leukemia cells: structure-function analysis. Leukemia 13(8):1243–1253

    PubMed  Article  CAS  Google Scholar 

  6. Carducci MA, Nelson JB, Chan-Tack KM, Ayyagari SR, Sweatt WH, Campbell PA, et al (1996) Phenylbutyrate induces apoptosis in human prostate cancer and is more potent than phenylacetate. Clin Cancer Res 2(2):379–387

    PubMed  CAS  Google Scholar 

  7. Samid D, Hudgins WR, Shack S, Liu L, Prasanna P, Myers CE (1997) Phenylacetate and phenylbutyrate as novel, nontoxic differentiation inducers. Adv Exp Med Biol 400A:501–505

    PubMed  CAS  Google Scholar 

  8. Warrell RP, Jr, He LZ, Richon V, Calleja E, Pandolfi PP (1998) Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J Natl Cancer Inst 90(21):1621–1625

    PubMed  Article  CAS  Google Scholar 

  9. Han S, Wada RK, Sidell N (2001) Differentiation of human neuroblastoma by phenylacetate is mediated by peroxisome proliferator-activated receptor gamma. Cancer Res 61(10):3998–4002

    PubMed  CAS  Google Scholar 

  10. Lea MA, Sura M, Desbordes C (2004) Inhibition of cell proliferation by potential peroxisome proliferator-activated receptor (PPAR) gamma agonists and antagonists. Anticancer Res 24(5A):2765–2771

    PubMed  CAS  Google Scholar 

  11. Darmaun D, Welch S, Rini A, Sager BK, Altomare A, Haymond MW (1998) Phenylbutyrate-induced glutamine depletion in humans: effect on leucine metabolism. Am J Physiol 274(5 Pt 1):E801–E807

    PubMed  CAS  Google Scholar 

  12. Nichols KE, Weinberg JB (1989) Essential amino acid deprivation induces monocytic differentiation of the human HL-60 myeloid leukemia cell line. Blood 73(5):1298–1306

    PubMed  CAS  Google Scholar 

  13. Zhang X, Wei L, Yang Y, Yu Q (2004) Sodium 4-phenylbutyrate induces apoptosis of human lung carcinoma cells through activating JNK pathway. J Cell Biochem 93(4):819–829

    PubMed  Article  CAS  Google Scholar 

  14. Thibault A, Cooper MR, Figg WD, Venzon DJ, Sartor AO, Tompkins AC, et al (1994) A phase I and pharmacokinetic study of intravenous phenylacetate in patients with cancer. Cancer Res 54(7):1690–1694

    PubMed  CAS  Google Scholar 

  15. Rudek MA, Zhao M, He P, Hartke C, Gilbert J, Gore SD, et al (2005) Pharmacokinetics of 5-azacitidine administered with phenylbutyrate in patients with refractory solid tumors or hematologic malignancies. J Clin Oncol 23(17):3906–3911

    PubMed  Article  CAS  Google Scholar 

  16. Phuphanich S, Baker SD, Grossman SA, Carson KA, Gilbert MR, Fisher JD, et al (2005) Oral sodium phenylbutyrate in patients with recurrent malignant gliomas: a dose escalation and pharmacologic study. Neuro-oncol 7(2):177–182

    PubMed  Article  CAS  Google Scholar 

  17. Carducci MA, Gilbert J, Bowling MK, Noe D, Eisenberger MA, Sinibaldi V, et al (2001) A Phase I clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clin Cancer Res 7(10):3047–3055

    PubMed  CAS  Google Scholar 

  18. Gore SD, Weng LJ, Figg WD, Zhai S, Donehower RC, Dover G, et al (2002) Impact of prolonged infusions of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia. Clin Cancer Res 8(4):963–970

    PubMed  CAS  Google Scholar 

  19. Gilbert J, Baker SD, Bowling MK, Grochow L, Figg WD, Zabelina Y, et al (2001) A phase I dose escalation and bioavailability study of oral sodium phenylbutyrate in patients with refractory solid tumor malignancies. Clin Cancer Res 7(8):2292–2300

    PubMed  CAS  Google Scholar 

  20. Boudoulas S, Lush RM, McCall NA, Samid D, Reed E, Figg WD (1996) Plasma protein binding of phenylacetate and phenylbutyrate, two novel antineoplastic agents. Ther Drug Monit 18(6):714–720

    PubMed  Article  CAS  Google Scholar 

  21. O'Quigley J, Chevret S (1991) Methods for dose finding studies in cancer clinical trials: a review and results of a Monte Carlo study. Stat Med 10(11):1647–1664

    PubMed  Google Scholar 

  22. Piscitelli SC, Thibault A, Figg WD, Tompkins A, Headlee D, Lieberman R, et al (1995) Disposition of phenylbutyrate and its metabolites, phenylacetate and phenylacetylglutamine. J Clin Pharmacol 35(4):368–373

    PubMed  CAS  Google Scholar 

  23. Thibault A, Figg WD, McCall N, Myers CE, Cooper MR (1994) A simultaneous assay of the differentiating agents phenylacetate and phenylbutyrate, and one of their metabolites, phenylglutamine, by reversed-phase, high performance liquid chromatography. J Liq Chromatogr 17:2895–2900

    CAS  Google Scholar 

  24. Thibault A, Samid D, Cooper MR, Figg WD, Tompkins AC, Patronas N, et al (1995) Phase I study of phenylacetate administered twice daily to patients with cancer. Cancer 75(12):2932–2938

    PubMed  Article  CAS  Google Scholar 

  25. Coffey DC, Kutko MC, Glick RD, Swendeman SL, Butler L, Rifkind R, et al (2000) Histone deacetylase inhibitors and retinoic acids inhibit growth of human neuroblastoma in vitro. Med Pediatr Oncol 35(6):577–581

    PubMed  Article  CAS  Google Scholar 

  26. Karasawa Y, Murakami A, Okisaka S (2000) Apoptosis after butyrate-induced differentiation in retinoblastoma cell line Y-79. Jpn J Ophthalmol 44(6):601–609

    PubMed  Article  CAS  Google Scholar 

  27. Pelidis MA, Carducci MA, Simons JW (1998) Cytotoxic effects of sodium phenylbutyrate on human neuroblastoma cell lines. Int J Oncol 12(4):889–893

    PubMed  CAS  Google Scholar 

  28. Berg S, Serabe B, Aleksic A, Bomgaars L, McGuffey L, Dauser R, et al (2001) Pharmacokinetics and cerebrospinal fluid penetration of phenylacetate and phenylbutyrate in the nonhuman primate. Cancer Chemother Pharmacol 47(5):385–390

    PubMed  Article  CAS  Google Scholar 

  29. Rocchi P, Ferreri AM, Magrini E, Perocco P (1998) Effect of butyrate analogues on proliferation and differentiation in human neuroblastoma cell lines. Anticancer Res 18(2A):1099–1103

    PubMed  CAS  Google Scholar 

  30. Stockhammer G, Manley GT, Johnson R, Rosenblum MK, Samid D, Lieberman FS (1995) Inhibition of proliferation and induction of differentiation in medulloblastoma- and astrocytoma-derived cell lines with phenylacetate. J Neurosurg 83(4):672–681

    PubMed  CAS  Article  Google Scholar 

  31. Sidell N, Wada R, Han G, Chang B, Shack S, Moore T, et al (1995) Phenylacetate synergizes with retinoic acid in inducing the differentiation of human neuroblastoma cells. Int J Cancer 60(4):507–514

    PubMed  CAS  Google Scholar 

  32. Ram Z, Samid D, Walbridge S, Oshiro EM, Viola JJ, Tao-Cheng JH, et al (1994) Growth inhibition, tumor maturation, and extended survival in experimental brain tumors in rats treated with phenylacetate. Cancer Res 54(11):2923–2927

    PubMed  CAS  Google Scholar 

  33. Samid D, Yeh TJ, Shack S (1991) Interferon in combination with antitumourigenic phenyl derivatives: potentiation of IFN alpha activity in-vitro. Br J Haematol 79(Suppl 1):81–83

    PubMed  CAS  Google Scholar 

  34. Gorospe M, Shack S, Guyton KZ, Samid D, Holbrook NJ (1996) Up-regulation and functional role of p21Waf1/Cip1 during growth arrest of human breast carcinoma MCF-7 cells by phenylacetate. Cell Growth Differ 7(12):1609–1615

    PubMed  CAS  Google Scholar 

  35. Bar-Ner M, Thibault A, Tsokos M, Magrath IT, Samid D (1999) Phenylbutyrate induces cell differentiation and modulates Epstein-Barr virus gene expression in Burkitt's lymphoma cells. Clin Cancer Res 5(6):1509–1516

    PubMed  CAS  Google Scholar 

  36. Shack S, Miller A, Liu L, Prasanna P, Thibault A, Samid D (1996) Vulnerability of multidrug-resistant tumor cells to the aromatic fatty acids phenylacetate and phenylbutyrate. Clin Cancer Res 2(5):865–872

    PubMed  CAS  Google Scholar 

  37. Samid D, Yeh A, Prasanna P (1992) Induction of erythroid differentiation and fetal hemoglobin production in human leukemic cells treated with phenylacetate. Blood 80(6):1576–1581

    PubMed  CAS  Google Scholar 

  38. Fibach E, Prasanna P, Rodgers GP, Samid D (1993) Enhanced fetal hemoglobin production by phenylacetate and 4-phenylbutyrate in erythroid precursors derived from normal donors and patients with sickle cell anemia and beta-thalassemia. Blood 82(7):2203–2209

    PubMed  CAS  Google Scholar 

  39. Young CW, Fanucchi MP, Declan Walsh T, Baltzer L, Yaldaei S, Stevens YW, et al (1988) Phase I trial and clinical pharmacological evaluation of hexamethylene bisacetamide administration by ten-day continuous intravenous infusion at twenty-eight-day intervals. Cancer Res 48(24 Pt 1):7304–7309

    PubMed  CAS  Google Scholar 

  40. Andreeff M, Stone R, Michaeli J, Young CW, Tong WP, Sogoloff H, et al (1992) Hexamethylene bisacetamide in myelodysplastic syndrome and acute myelogenous leukemia: a phase II clinical trial with a differentiation-inducing agent. Blood 80(10):2604–2609

    PubMed  CAS  Google Scholar 

  41. Maslak P, Chanel S, Camacho LH, Soignet S, Pandolfi PP, Guernah I, et al (2006) Pilot study of combination transcriptional modulation therapy with sodium phenylbutyrate and 5-azacytidine in patients with acute myeloid leukemia or myelodysplastic syndrome. Leukemia 20(2):212–217

    PubMed  Article  CAS  Google Scholar 

  42. Camacho LH, Novick S, Tolentino T, Tong WP, Richon V, Warrell RP, Jr (2006) Clinical modulation of gene transcription Via inhibition of histone deacetylase using all-trans retinoic acid plus sodium phenylbutyrate. In: Proceedings of the Am Soc Clin Oncol, 2000, New Orleans, 2000, p 461a

Download references

Acknowledgments

The authors would like to acknowledge the support and guidance of Jamie Zwiebel, MD at the Clinical Investigational Branch; Cancer Therapy Evaluation Program at the National Cancer Institute, Bethesda, MD.

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by grant UO1: CA69856 from the National Cancer Institute, Bethesda, MD (Memorial Sloan-Kettering Cancer), and a Clinical Cancer Research Grant from the Cancer and Leukemia Group B (LHC).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Camacho, L.H., Olson, J., Tong, W.P. et al. Phase I dose escalation clinical trial of phenylbutyrate sodium administered twice daily to patients with advanced solid tumors. Invest New Drugs 25, 131–138 (2007). https://doi.org/10.1007/s10637-006-9017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-006-9017-4

Keywords

  • Phenylbutyrate
  • Cellular differentiation
  • Phase I
  • Histone acetylation