Skip to main content

Advertisement

Log in

Long-term blue light rearing does not affect in vivo retinal function in young rhesus monkeys

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

Exposure to blue light is thought to be harmful to the retina. The purpose of this study was to determine the effects of long-term exposure to narrowband blue light on retinal function in rhesus monkeys.

Methods

Young rhesus monkeys were reared under short-wavelength “blue” light (n = 7; 465 nm, 183 ± 28 lx) on a 12-h light/dark cycle starting at 26 ± 2 days of age. Age-matched control monkeys were reared under broadband “white” light (n = 8; 504 ± 168 lx). Light- and dark-adapted full-field flash electroretinograms (ERGs) were recorded at 330 ± 9 days of age. Photopic stimuli were brief red flashes (0.044–5.68 cd.s/m2) on a rod-saturating blue background and the International Society for Clinical Electrophysiology of Vision (ISCEV) standard 3.0 white flash on a 30 cd/m2 white background. Monkeys were dark adapted for 20 min and scotopic stimuli were ISCEV standard white flashes of 0.01, 3.0, and 10 cd.s/m2. A-wave, b-wave, and photopic negative response (PhNR) amplitudes were measured. Light-adapted ERGs in young monkeys were compared to ERGs in adult monkeys reared in white light (n = 10; 4.91 ± 0.88 years of age).

Results

For red flashes on a blue background, there were no significant differences in a-wave (P = 0.46), b-wave (P = 0.75), and PhNR amplitudes (P = 0.94) between white light and blue light reared monkeys for all stimulus energies. ISCEV standard light- and dark-adapted a- and b-wave amplitudes were not significantly different between groups (P > 0.05 for all). There were no significant differences in a- and b-wave implicit times between groups for all ISCEV standard stimuli (P > 0.05 for all). PhNR amplitudes of young monkeys were significantly smaller compared to adult monkeys for all stimulus energies (P < 0.05 for all). There were no significant differences in a-wave (P = 0.19) and b-wave (P = 0.17) amplitudes between young and adult white light reared monkeys.

Conclusions

Long-term exposure to narrowband blue light did not affect photopic or scotopic ERG responses in young monkeys. Findings suggest that exposure to 12 h of daily blue light for approximately 10 months does not result in altered retinal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brainard GC, Hanifin JP, Greeson JM, Byrne B, Glickman G, Gerner E et al (2001) Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci 21(16):6405–6412. https://doi.org/10.1523/jneurosci.21-16-06405.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thapan K, Arendt J, Skene DJ (2001) An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol 535(Pt 1):261–267. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00261.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lockley SW, Brainard GC, Czeisler CA (2003) High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocrinol Metab 88(9):4502–4505. https://doi.org/10.1210/jc.2003-030570

    Article  CAS  PubMed  Google Scholar 

  4. Cajochen C, Münch M, Kobialka S, Kräuchi K, Steiner R, Oelhafen P et al (2005) High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J Clin Endocrinol Metab 90(3):1311–1316. https://doi.org/10.1210/jc.2004-0957

    Article  CAS  PubMed  Google Scholar 

  5. Revell VL, Arendt J, Fogg LF, Skene DJ (2006) Alerting effects of light are sensitive to very short wavelengths. Neurosci Lett 399(1–2):96–100. https://doi.org/10.1016/j.neulet.2006.01.032

    Article  CAS  PubMed  Google Scholar 

  6. Cajochen C (2007) Alerting effects of light. Sleep Med Rev 11(6):453–464. https://doi.org/10.1016/j.smrv.2007.07.009

    Article  PubMed  Google Scholar 

  7. Wahl S, Engelhardt M, Schaupp P, Lappe C, Ivanov IV (2019) The inner clock-Blue light sets the human rhythm. J Biophotonics 12(12):102. https://doi.org/10.1002/jbio.201900102

    Article  CAS  Google Scholar 

  8. Touitou Y, Point S (2020) Effects and mechanisms of action of light-emitting diodes on the human retina and internal clock. Environ Res 190:109942. https://doi.org/10.1016/j.envres.2020.109942

    Article  CAS  PubMed  Google Scholar 

  9. Bullough JD, Bierman A, Rea MS (2019) Evaluating the blue-light hazard from solid state lighting. Int J Occup Saf Erg 25(2):311–320. https://doi.org/10.1080/10803548.2017.1375172

    Article  Google Scholar 

  10. Ham WT Jr, Mueller HA, Sliney DH (1976) Retinal sensitivity to damage from short wavelength light. Nature 260(5547):153–155. https://doi.org/10.1038/260153a0

    Article  PubMed  Google Scholar 

  11. Ham WT Jr, Ruffolo JJ Jr, Mueller HA, Clarke AM, Moon ME (1978) Histologic analysis of photochemical lesions produced in rhesus retina by short-wave-length light. Invest Ophthalmol Vis Sci 17(10):1029–1035

    PubMed  Google Scholar 

  12. Shang YM, Wang GS, Sliney D, Yang CH, Lee LL (2014) White light-emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. Environ Health Perspect 122(3):269–276. https://doi.org/10.1289/ehp.1307294

    Article  PubMed  Google Scholar 

  13. Shang YM, Wang GS, Sliney DH, Yang CH, Lee LL (2017) Light-emitting-diode induced retinal damage and its wavelength dependency in vivo. Int J Ophthalmol 10(2):191–202. https://doi.org/10.18240/ijo.2017.02.03

    Article  PubMed  PubMed Central  Google Scholar 

  14. Krigel A, Berdugo M, Picard E, Levy-Boukris R, Jaadane I, Jonet L et al (2016) Light-induced retinal damage using different light sources, protocols and rat strains reveals LED phototoxicity. Neuroscience 339:296–307. https://doi.org/10.1016/j.neuroscience.2016.10.015

    Article  CAS  PubMed  Google Scholar 

  15. Point S, Beroud M (2019) Blue light hazard: does rat retina make relevant model for discussing exposure limit values applicable to humans? Radioprotection 54(2):141–147. https://doi.org/10.1051/radiopro/2019013

    Article  CAS  Google Scholar 

  16. Lei B, Yao G (2006) Spectral attenuation of the mouse, rat, pig and human lenses from wavelengths 360 nm to 1020 nm. Exp Eye Res 83(3):610–614. https://doi.org/10.1016/j.exer.2006.02.013

    Article  CAS  PubMed  Google Scholar 

  17. O’Hagan JB, Khazova M, Price LL (2016) Low-energy light bulbs, computers, tablets and the blue light hazard. Eye 30(2):230–233. https://doi.org/10.1038/eye.2015.261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin KH, Tran T, Kim S, Park S, Stout JT, Chen R et al (2021) Advanced retinal imaging and ocular parameters of the rhesus macaque eye. Transl Vis Sci Technol 10(6):7. https://doi.org/10.1167/tvst.10.6.7

    Article  PubMed  PubMed Central  Google Scholar 

  19. Qiao-Grider Y, Hung L-F, Kee CS, Ramamirtham R, Smith EL 3rd (2007) Normal ocular development in young rhesus monkeys (Macaca mulatta). Vision Res 47(11):1424–1444. https://doi.org/10.1016/j.visres.2007.01.025

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lou L, Arumugam B, Hung L-F, She Z, Beach KM, Smith EL 3rd et al (2021) Long-term narrowband lighting influences activity but not intrinsically photosensitive retinal ganglion cell-driven pupil responses. Front Physiol 12:711525. https://doi.org/10.3389/fphys.2021.711525

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hung L-F, Beach K, She Z, Arumugam B, Ostrin L, Smith EL (2020) Effect of narrowband, short-wavelength ambient lighting on refractive development in infant rhesus monkeys. Invest Ophthalmol Vis Sci 61(7):560

    Google Scholar 

  22. Hung L-F, Beach KM, She Z, Ostrin LA, Smith EL (2021) Effects of narrowband, short-wavelength ambient lighting on form deprivation myopia in infant rhesus monkeys. Invest Ophthalmol Vis Sci 62(8):1378

    Google Scholar 

  23. She Z, Hung L-F, Arumugam B, Beach KM, Smith EL 3rd (2020) Effects of low intensity ambient lighting on refractive development in infant rhesus monkeys (Macaca mulatta). Vision Res 176:48–59. https://doi.org/10.1016/j.visres.2020.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  24. Baylor DA, Nunn BJ, Schnapf JL (1987) Spectral sensitivity of cones of the monkey Macaca fascicularis. J Physiol 390:145–160. https://doi.org/10.1113/jphysiol.1987.sp016691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith EL 3rd, Hung L-F (1999) The role of optical defocus in regulating refractive development in infant monkeys. Vision Res 39(8):1415–1435. https://doi.org/10.1016/S0042-6989(98)00229-6

    Article  PubMed  Google Scholar 

  26. Delori F (2014) The ANSI 2014 standard for safe use of lasers. Frontiers in Optics 2014. Tucson, Optica Publishing Group, Arizona https://doi.org/10.1364/FIO.2014.FW1F.2

  27. Dawson WW, Trick GL, Litzkow CA (1979) Improved electrode for electroretinography. Invest Ophthalmol Vis Sci 18(9):988–991

    CAS  PubMed  Google Scholar 

  28. Frishman L, Sustar M, Kremers J, McAnany JJ, Sarossy M, Tzekov R et al (2018) ISCEV extended protocol for the photopic negative response (PhNR) of the full-field electroretinogram. Doc Ophthalmol 136(3):207–211. https://doi.org/10.1007/s10633-018-9638-x

    Article  PubMed  PubMed Central  Google Scholar 

  29. Robson AG, Frishman LJ, Grigg J, Hamilton R, Jeffrey BG, Kondo M et al (2022) ISCEV standard for full-field clinical electroretinography (2022 update). Doc Ophthalmol 144(3):165–177. https://doi.org/10.1007/s10633-022-09872-0

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fulton AB, Rushton WAH (1978) The human rod ERG: correlation with psychophysical responses in light and dark adaptation. Vision Res 18(7):793–800. https://doi.org/10.1016/0042-6989(78)90119-0

    Article  CAS  PubMed  Google Scholar 

  31. Binns AM, Mortlock KE, North RV (2011) The relationship between stimulus intensity and response amplitude for the photopic negative response of the flash electroretinogram. Doc Ophthalmol 122(1):39–52. https://doi.org/10.1007/s10633-010-9257-7

    Article  CAS  PubMed  Google Scholar 

  32. Johnson MA, Jeffrey BG, Messias AMV, Robson AG (2019) ISCEV extended protocol for the stimulus-response series for the dark-adapted full-field ERG b-wave. Doc Ophthalmol 138(3):217–227. https://doi.org/10.1007/s10633-019-09687-6

    Article  PubMed  Google Scholar 

  33. Brown KT, Wiesel TN (1961) Localization of origins of electroretinogram components by intraretinal recording in the intact cat eye. J Physiol 158(2):257–280. https://doi.org/10.1113/jphysiol.1961.sp006768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bush RA, Sieving PA (1994) A proximal retinal component in the primate photopic ERG a-wave. Invest Ophthalmol Vis Sci 35(2):635–645

    CAS  PubMed  Google Scholar 

  35. Robson JG, Saszik SM, Ahmed J, Frishman LJ (2003) Rod and cone contributions to the a-wave of the electroretinogram of the macaque. J Physiol 547(2):509–530. https://doi.org/10.1113/jphysiol.2002.030304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Knapp AG, Schiller PH (1984) The contribution of on-bipolar cells to the electroretinogram of rabbits and monkeys. A study using 2-amino-4-phosphonobutyrate (APB). Vision Res 24(12):1841–6. https://doi.org/10.1016/0042-6989(84)90016-6

    Article  CAS  PubMed  Google Scholar 

  37. Sieving PA, Murayama K, Naarendorp F (1994) Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 11(3):519–532. https://doi.org/10.1017/s0952523800002431

    Article  CAS  PubMed  Google Scholar 

  38. Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL 3rd (1999) The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 40(6):1124–1136

    CAS  PubMed  Google Scholar 

  39. Harwerth RS, Sperlng HG (1971) Prolonged color blindness induced by intense spectral lights in rhesus monkeys. Science 174(4008):520–523. https://doi.org/10.1126/science.174.4008.520

    Article  CAS  PubMed  Google Scholar 

  40. Behar-Cohen F, Martinsons C, Viénot F, Zissis G, Barlier-Salsi A, Cesarini JP et al (2011) Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Prog Retin Eye Res 30(4):239–257. https://doi.org/10.1016/j.preteyeres.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  41. Jaadane I, Boulenguez P, Chahory S, Carré S, Savoldelli M, Jonet L et al (2015) Retinal damage induced by commercial light emitting diodes (LEDs). Free Radic Biol Med 84:373–384. https://doi.org/10.1016/j.freeradbiomed.2015.03.034

    Article  CAS  PubMed  Google Scholar 

  42. Gorgels TG, van Norren D (1992) Spectral transmittance of the rat lens. Vision Res 32(8):1509–1512. https://doi.org/10.1016/0042-6989(92)90206-x

    Article  CAS  PubMed  Google Scholar 

  43. van Norren D (1972) Macaque lens absorption in vivo. Invest Ophthalmol 11(3):177–181

    PubMed  Google Scholar 

  44. Boettner EA, Wolter JR (1962) Transmission of the ocular media. Invest Ophthalmol Vis Sci 1(6):776–783

    Google Scholar 

  45. Harwerth RS, Smith EL 3rd (1985) Rhesus monkey as a model for normal vision of humans. Am J Optom Physiol Opt 62(9):633–641. https://doi.org/10.1097/00006324-198509000-00009

    Article  CAS  PubMed  Google Scholar 

  46. Lindbloom-Brown Z, Tait LJ, Horwitz GD (2014) Spectral sensitivity differences between rhesus monkeys and humans: implications for neurophysiology. J Neurophysiol 112(12):3164–3172. https://doi.org/10.1152/jn.00356.2014

    Article  PubMed  PubMed Central  Google Scholar 

  47. Prayag AS, Münch M, Aeschbach D, Chellappa SL, Gronfier C (2019) Light modulation of human clocks, wake, and sleep. Clocks Sleep 1(1):193–208. https://doi.org/10.3390/clockssleep1010017

    Article  PubMed  PubMed Central  Google Scholar 

  48. Foulds WS, Barathi VA, Luu CD (2013) Progressive myopia or hyperopia can be induced in chicks and reversed by manipulation of the chromaticity of ambient light. Invest Ophthalmol Vis Sci 54(13):8004–8012. https://doi.org/10.1167/iovs.13-12476

    Article  PubMed  Google Scholar 

  49. Jiang L, Zhang S, Schaeffel F, Xiong S, Zheng Y, Zhou X et al (2014) Interactions of chromatic and lens-induced defocus during visual control of eye growth in guinea pigs (Cavia porcellus). Vision Res 94:24–32. https://doi.org/10.1016/j.visres.2013.10.020

    Article  PubMed  Google Scholar 

  50. Liu R, Qian Y-F, He JC, Hu M, Zhou X-T, Dai J-H et al (2011) Effects of different monochromatic lights on refractive development and eye growth in guinea pigs. Exp Eye Res 92(6):447–453. https://doi.org/10.1016/j.exer.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  51. Gawne TJ, Ward AH, Norton TT (2018) Juvenile tree shrews do not maintain emmetropia in narrow-band blue light. Optom Vis Sci 95(10):911–920. https://doi.org/10.1097/OPX.0000000000001283

    Article  PubMed  PubMed Central  Google Scholar 

  52. Breton ME, Quinn GE, Schueller AW (1995) Development of electroretinogram and rod phototransduction response in human infants. Invest Ophthalmol Vis Sci 36(8):1588–1602

    CAS  PubMed  Google Scholar 

  53. Westall CA, Panton CM, Levin AV (1998) Time courses for maturation of electroretinogram responses from infancy to adulthood. Doc Ophthalmol 96(4):355–379. https://doi.org/10.1023/a:1001856911730

    Article  PubMed  Google Scholar 

  54. Rangaswamy NV, Frishman LJ, Dorotheo EU, Schiffman JS, Bahrani HM, Tang RA (2004) Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina. Invest Ophthalmol Vis Sci 45(10):3827–3837. https://doi.org/10.1167/iovs.04-0458

    Article  PubMed  Google Scholar 

  55. Wang J, Cheng H, Hu YS, Tang RA, Frishman LJ (2012) The photopic negative response of the flash electroretinogram in multiple sclerosis. Invest Ophthalmol Vis Sci 53(3):1315–1323. https://doi.org/10.1167/iovs.11-8461

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Hope Queener for the MATLAB program and Dr. Alexander Schill for help with the blue light exposure limit calculations.

Funding

Supported by National Institute of Health Grants R01 EY003611 and P30 EY007551, and funds from the Brien Holden Vision Institute and the UH Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa A. Ostrin.

Ethics declarations

Conflict of interest

ELS holds patents for optical and pharmaceutical treatment strategies for myopia and is a paid consultant for SightGlass Vision Inc., Treehouse Eyes Inc., and Vision CRC USA. The other authors declare that they have no conflict of interest.

Ethical approval

Study procedures were reviewed and approved by the Institutional Animal Care and Use Committee at the University of Houston.

Informed consent

There are no human subjects in this study. We have included the ethics statements associated with animal studies.

Statement on the welfare of animals

All procedures conformed to the ARVO statement for the Use of Animals in Ophthalmic and Vision Research.

Statement of human rights

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, L., Frishman, L.J., Beach, K.M. et al. Long-term blue light rearing does not affect in vivo retinal function in young rhesus monkeys. Doc Ophthalmol 147, 45–57 (2023). https://doi.org/10.1007/s10633-023-09931-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-023-09931-0

Keywords

Navigation