Skip to main content

Advertisement

Log in

Continuous wavelet transform analysis of ERG in patients with diabetic retinopathy

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

Diabetic retinopathy (DR) is one of the leading causes of blindness worldwide. Non-proliferative diabetic retinopathy (NPDR) is a stage of the disease that contains morphological and functional disruption of the retinal vasculature and dysfunction of retinal neurons. This study aimed to compare time and time–frequency-domain analysis in the evaluation of electroretinograms (ERGs) in subjects with NPDR.

Method

The ERG responses were recorded in 16 eyes from 12 patients with NPDR and 24 eyes from 12 healthy subjects as the control group. The implicit time, amplitude, and time–frequency-domain parameters of photopic and scotopic ERGs were analyzed.

Results

The implicit times of b-waves in the dark-adapted 10.0 (P = 0.0513) and light-adapted 3.0 (P = 0.0414) were significantly increased in the NPDR group. The amplitudes of a- and b-wave showed a significantly decreased dark-adapted 10.0 (P = 0.0212; P = 0.0133) and light-adapted 3.0 (P = 0.0517; P = 0.0021) ERG of the NPDR group. The Cohen's d effect size had higher values in the amplitude of dark-adapted 10.0 b-wave (|d|= 1.8058) and amplitude of light-adapted 3.0 b-wave (|d|= 1.9662). The CWT results showed that the frequency ranges of the dominant components in dark-adapted 10.0 and light-adapted 3.0 ERG were decreased in the NPDR group compared to the healthy group (P < 0.05). The times associated with the NDPR group's dominant components were increased compared to normal eyes in both dark-adapted 10.0 and light-adapted 3.0 ERG (P < 0.05). All Cohen's d effect sizes of the implicit times and dominant frequency components were on a large scale (|d|> 1).

Conclusion

These findings suggest that the time and time–frequency parameters of both photopic and scotopic ERGs can be good indicators for DR. However, time–frequency-domain analysis could present more information might be helpful in the assessment of the DR severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CRD:

Cone-rod dystrophy

CRVO:

Central retinal vein occlusion

CSNB:

Congenital stationary night blindness

CWT:

Continuous wavelet transform

DWT:

Discrete wavelet transform

ECG:

Electrocardiogram

EEG:

Electroencephalogram

ERG:

Electroretinogram

FFERG:

Full-field ERG

ISCEV:

Clinical electrophysiology of vision

NPDR:

Non-proliferative diabetic retinopathy

OCT:

Optical coherent tomography

OPs:

Oscillatory potentials

PDR:

Proliferative diabetic retinopathy

PhNR:

Photopic negative response

RP:

Retinitis pigmentosa

SD:

Standard deviation

References

  1. Pescosolido N, Barbato A, Stefanucci A, Buomprisco G (2015) Role of Electrophysiology in the early diagnosis and follow-up of diabetic retinopathy. J Diabetes Res 2015:319692

    PubMed  PubMed Central  Google Scholar 

  2. Klemp K, Sander B, Brockhoff PB, Vaag A, Lund-Andersen H, Larsen M (2005) The multifocal ERG in diabetic patients without retinopathy during euglycemic clamping. Investig Ophthalmol Vis Sci 46(7):2620–2626

    Google Scholar 

  3. Umashankara GR (2015) A review on electrophysiology based detection of diabetic retinopathy. Procedia Comput Sci 48:630–637

    Google Scholar 

  4. Resnikoff S, Pascolini D, Etya’ale D et al (2004) Global data on visual impairment in 2002. Bull World Health Organ 82:844–852

    PubMed  PubMed Central  Google Scholar 

  5. Klein BE (2007) Overview of epidemiologic studies of diabetic retinopathy. Ophthalmic Epidemiol 14:179–183

    PubMed  Google Scholar 

  6. Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 376:124–136

    PubMed  Google Scholar 

  7. Fukuo M, Kondo M, Hirose A, Fukushima H, Ikesugi K, Sugimoto M et al (2016) Screening for diabetic retinopathy using new mydriasis-free, full-field flicker ERG recording device. Sci Rep 6:36591

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hutchinson A et al (2000) Effectiveness of screening and monitoring tests for diabetic retinopathy—a systematic review. Diabet Med 17:495–506

    CAS  PubMed  Google Scholar 

  9. Early Treatment, Diabetic Retinopathy Study Research Group (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification. ETDRS report no. 10. Ophthalmology 98:786–806

    Google Scholar 

  10. Bresnick GH, Palta M (1987) Temporal aspects of the electroretinogram in diabetic retinopathy. Arch Ophthalmol 105:660–664

    CAS  PubMed  Google Scholar 

  11. Satoh S, Iijima H, Imai M, Abe K, Shibuya T (1994a) Photopic electroretinogram implicit time in diabetic retinopathy. Jpn J Ophthalmol 38:178–184

    CAS  PubMed  Google Scholar 

  12. Holopigian K, Seiple W, Lorenzo M, Carr R (1992) A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy. Invest Ophthalmol Vis Sci 33:2773–2780

    CAS  PubMed  Google Scholar 

  13. Young B, Eggenberger E, Kaufman D (2012) Current electrophysiology in ophthalmology: a review. Curr Opin Ophthalmol 23:497–550

    PubMed  Google Scholar 

  14. Watanabe SE, Mitne S, Noia LC, Berezovsky A, Sacai PY, Salomao SR et al (2012) Electroretinogram findings in patients with proliferative diabetic retinopathy after argon laser photocoagulation. Investig Ophthalmol Vis Sci 53:373

    Google Scholar 

  15. Harrison WW, Bearse MA, Ng JS, Jewell NP, Barez S, Burger D et al (2011) Multifocal electroretinograms predict onset of diabetic retinopathy in adult patients with diabetes. Investig Ophthalmol Vis Sci 52:772–777

    Google Scholar 

  16. Bearse MA Jr, Adams AJ, Han Y, Schneck ME, Ng J, Bronson-Castain K, Barez S (2006) A multifocal electroretinogram model predicting the development of diabetic retinopathy. Prog Retinal Eye Res 25(5):425–448

    Google Scholar 

  17. Tzekov R, Arden GB (1999) The Electroretinogram in diabetic retinopathy. Surv Ophthalmol 44:53–60

    CAS  PubMed  Google Scholar 

  18. Satoh S, Iijima H, Imai M, Abe K, Shibuya T (1994b) Photopic electroretinogram implicit time in diabetic retinopathy. Jpn J Ophthalmol 38(2):178–184

    CAS  PubMed  Google Scholar 

  19. Poppele RE, Maffei L (1967) Frequency analysis of the Electroretinogram. J Neurophysiol 30:982–992

    CAS  PubMed  Google Scholar 

  20. Gur M, Gath I (1979) Time and frequency analysis of simultaneously recorded corneal and non-corneal Electroretinogram. J Biomed Eng 1(3):172–174

    CAS  PubMed  Google Scholar 

  21. Gur M, Zeevi YY (1980) Frequency-domain analysis of the human Electroretinogram. J Opt Soc America 70(1):53–59

    CAS  Google Scholar 

  22. Van der Torren K, Groeneweg G, van Lith G (1988) Measuring oscillatory potentials: fourier analysis. Doc Ophthalmol 69(2):153–159

    PubMed  Google Scholar 

  23. Nair SS, Joseph KP (2014) Chaotic analysis of the electroretinographic signal for diagnosis. BioMed Res Int 2014:1–8

    Google Scholar 

  24. Sefandarmaz N, Behbahani S, Ramezani A (2020) A novel method for electroretinogram assessment in patients with central retinal vein occlusion. Doc Ophthalmol 140(3):257–271

    PubMed  Google Scholar 

  25. Miguel Jimenez JM, Ortega S, Boquete L, Rodríguez-Ascariz JM, Blanco R (2011) Multifocal ERG wavelet packet decomposition applied to glaucoma diagnosis. BioMed Eng Online 10(37):37

    PubMed  PubMed Central  Google Scholar 

  26. Nair SS, Paul JK (2014) Wavelet-based electroretinographic signal analysis for diagnosis. Biomed Signal Process Control 9:37–44

    Google Scholar 

  27. Barraco R, Adorno DP, Brai M (2011a) An approach based on wavelet analysis for feature extraction in the a-wave of the electroretinogram. Comput Methods Programs Biomed 104(3):316–324

    CAS  PubMed  Google Scholar 

  28. Gotzmann J, Dimopoulos I, Sauve Y (2014) Contribution of oscillatory potentials to the ON- and OFF-photopic Electroretinogram (ERG) in humans. Invest Ophthalmol Vis Sci 55:3510

    Google Scholar 

  29. Alaql AM (2016) Analysis and processing of human electroretinogram (Masters thesis). The University of South Florida

  30. Behbahani S, Ramezani A, Moridani MK, Sabbaghi H (2020) Time-frequency analysis of photopic negative response in CRVO patients. Semin Ophthalmol 35(3):187–193

    PubMed  Google Scholar 

  31. Gauvin M, Sustar M, Little JM, Brecelj J, Lina JM, Lachapelle P (2017) Quantifying the ON and OFF contributions to the flash erg with the discrete wavelet transform. Transl Vis Sci Technol 6(1):3

    PubMed  PubMed Central  Google Scholar 

  32. Gauvin M, Chakor H, Koenekoop RK, Little JM, Lina JM, Lachapelle P (2016) Witnessing the first sign of retinitis pigmentosa onset in the allegedly normal eye of a case of unilateral RP: a 30-year follow-up. Doc Ophthalmol 132(3):213–229

    PubMed  Google Scholar 

  33. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, Bach M (2015) ISCEV standard for full-field clinical electroretinography. Doc Ophthalmol 130:1–12

    PubMed  Google Scholar 

  34. Penkala K (2005) Analysis of bioelectrical signals of the human retina (PERG) and visual cortex (PVEP) evoked by pattern stimuli. Bull Pol Acad Sci 53(3):223–229

    Google Scholar 

  35. Penkala K, Jaskuła M, Lubiński W (2007) Improvement of the PERG parameters measurement accuracy in the continuous wavelet transform coefficients domain. Ann Acad Med Stetin 53(1):58–60

    PubMed  Google Scholar 

  36. Penkala K (2010) Continuous wavelet transformation of pattern electroretinogram (PERG)—a tool is improving the test accuracy. XII mediterranean conference on medical and biological engineering and computing. 29: 196–199

  37. Komorowski D, Pietraszek S (2016) The use of continuous wavelet transform based on the fast fourier transform in the analysis of multi-channel electrogastrography recordings. J Med Syst 40:10

    PubMed  Google Scholar 

  38. Mgdob HM, Torry JN, Vincent R, Al-Naami B (2003) Application of morlet transform wavelet in the detection of paradoxical splitting of the second heart sound. Comput Cardiol 30:323–326

    Google Scholar 

  39. Yi H, Chen Z, Cao Y (2014) High precision computation of morlet wavelet transform for multi-period analysis of climate data. J Inf Comput Sci 11:6369–6385

    Google Scholar 

  40. Miguel-Jiménez JM, Blanco R, De-Santiago L, Fernández A, Rodríguez-Ascariz JM, Barea R, Martín-Sánchez JL, Amo C, Sánchez-Morla E, Boquete L (2015) Continuous-wavelet-transform analysis of the multifocal ERG waveform in glaucoma diagnosis. Med Biol Eng Comput 53(9):771–780

    PubMed  Google Scholar 

  41. Dimopoulos IS, Freund PR, Redel T, Dornstauder B, Gilmour G, Sauve Y (2014) Changes in rod and cone-driven oscillatory potentials in the aging human retina. Invest Ophthalmol Vis Sci 55:5058–5073

    PubMed  Google Scholar 

  42. Gauvin M, Little JM, Lina JM, Lachapelle P (2015) Functional decomposition of the human ERG based on the discrete wavelet transform. J Vis 15(16):14

    PubMed  Google Scholar 

  43. Parvaresh MM, Ghiasian L, Falavarjani KG, Sanjari M, Sadighi N (2009) Normal values of standard full field electroretinography in an Iranian population. J Ophthalmic Vis Res 4(2):97–101

    PubMed  PubMed Central  Google Scholar 

  44. Wood A, Margrain T, Binns AM (2014) Detection of early age-related macular degeneration using novel functional parameters of the focal cone electroretinogram. PLoS ONE 9(5):e96742

    PubMed  PubMed Central  Google Scholar 

  45. Benchorin G, Calton MA, Beaulieu MO, Vollrath D (2017) Assessment of murine retinal function by electroretinography. Bio Protoc 7(7):e2218

    PubMed  PubMed Central  Google Scholar 

  46. Prokofyeva E, Troeger E, Zrenner E (2012) The special electrophysiological signs of inherited retinal dystrophies. Open Ophthalmol J 6:86–97

    PubMed  PubMed Central  Google Scholar 

  47. Yamashita T, Miki A, Tabuchi A, Funada H, Kondo M (2017) A novel method to reduce noise in electroretinography using skin electrodes: a study of noise level, inter-session variability, and reproducibility. Int Ophthalmol 37(2):317–324

    PubMed  Google Scholar 

  48. Terelak-Borys B, Skonieczna K, Grabska-Liberek I (2012) Ocular ischemic syndrome—a systematic review. Med Sci Monit 18(8):RA138–RA144

    PubMed  PubMed Central  Google Scholar 

  49. de Oliveira BMR, Nakayama LF, de Godoy BR et al (2020) Reliability of foveal avascular zone measurements in eyes with retinal vein occlusion using optical coherence tomography angiography. Int J Retin Vitr 6:35

    Google Scholar 

  50. Chan CK, Ip MS, VanVeldhuisen PC, Oden NL, Scott IU, Tolentino MJ, Blodi BA et al (2011) SCORE study #11: report incidences of neonvascular events in eyes with retinal vein occlusion. Ophthalmology 118(7):1364–1372

    PubMed  Google Scholar 

  51. Gauvin M, Lina JM, Lachapelle P (2014) Advance in erg analysis: from peak time and amplitude to frequency, power, and energy. BioMed Res Int 2014:1–11

    Google Scholar 

  52. Barraco R, Adorno DP, Brai M (2011b) ERG signal analysis using wavelet transform. Theory Biosci 130:155–163

    CAS  PubMed  Google Scholar 

  53. Barraco R, Adorno DP, Brai M, Tranchina L (2014) A comparison among different techniques for human ERG signals processing and classification. Physica Med 30:86–95

    CAS  Google Scholar 

  54. Chenda S, Lee YJ, Park JY, Ohn YH (2009) Electroretinographic findings in patients with central retinal vein occlusion. J Soonchunhyang Med Sci 15(1):33–40

    Google Scholar 

  55. Khojasteh H, Vishte RA, Mirzajani A, Pour EK, Bazvand F, Esfahani HR et al (2020) Electroretinogram changes following sequential panretinal photocoagulation for proliferative diabetic retinopathy. Clin Ophthalmol 14:967–975

    PubMed  PubMed Central  Google Scholar 

  56. Kim HD, Park JY, Ohn YH (2010) Clinical applications of photopic negative response (PhNR) for the treatment of glaucoma and diabetic retinopathy Korean. J Ophthalmol 24(2):89–95

    Google Scholar 

  57. Ebdali S, Hashemi B, Jafarzadehpour E (2017) Comparing the variation of time and frequency components of electroretinogram in patients with retinitis pigmentosa and healthy individuals. J Mazandaran Univ Med Sci 26(145):110–121

    Google Scholar 

  58. Kjeka O, Bredrup C, Krohn J (2007) Photopic 30 Hz flicker electroretinography predicts ocular neovascularization in central retinal vein occlusion. Acta Ophthalmol Scand 85:640–643

    PubMed  Google Scholar 

  59. Moschos M, Brouzas D, Moschou M, Theodossiadis G (1999) The a- and b-wave latencies as a prognostic indicator of neovascularization in central retinal vein occlusion. Doc Ophthalmol 99(2):123–133

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, for collaborating on classifying and reviewing the clinical information of patients and the database registration.

Funding

Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, funded this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soroor Behbahani.

Ethics declarations

Conflict of interest

Hamid Ahmadieh declares that she has no conflict of interest. Soroor Behbahani declares that she has no conflict of interest. Sare Safi declares that he has no conflict of interest.

Human and animal rights

All procedures performed in studies involving human participants were, according to the standards of the Ethics Committee of the Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, and correlated with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Statement on the welfare of animals

The paper does not include any animal sample or data.

Informed consent

Informed consent was obtained from all participants recruited in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadieh, H., Behbahani, S. & Safi, S. Continuous wavelet transform analysis of ERG in patients with diabetic retinopathy. Doc Ophthalmol 142, 305–314 (2021). https://doi.org/10.1007/s10633-020-09805-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-020-09805-9

Keywords

Navigation