Skip to main content

Advertisement

Log in

Normal to supernormal 30-Hz flicker ERGs predict visual function and prognosis in central retinal artery occlusion

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

To determine whether normal to supernormal 30-Hz flicker ERGs are associated with visual function and prognosis in patients with central retinal artery occlusion (CRAO).

Methods

A total of 133 patients diagnosed with unilateral acute non-arteritic CRAO by examination with electroretinography (ERG) were examined. Thirty-hertz flicker ERG amplitudes were analyzed according to the severity of CRAO, and their correlation with visual function and prognosis was assessed. All patients were categorized into one of three groups according to the flicker ERG amplitude ratios between affected and fellow eyes: ≥ 110%, supernormal; 90–110%, normal; and < 90%, subnormal.

Results

Thirty-hertz flicker ERG parameters differed significantly according to the severity of retinal ischemia, i.e., between incomplete versus complete CRAO: mean amplitude (55.89 ± 24.38 > 45.41 ± 23.47 μV, P = 0.029), amplitude ratio (76.1 ± 23.1% > 58.7 ± 25.7%, P < 0.001), and proportion of normal to supernormal flicker ERGs (30.5% > 12.4%, P < .001). One-month and final follow-up visual function and prognosis were better in the normal to supernormal flicker ERGs: 1 month BCVA (1.55 ± 0.65 > 2.05 ± 0.61 logMAR, P < .001), final BCVA (1.32 ± 0.79 > 1.97 ± 0.68 logMAR, P < .001), 1-month VA improvement (− 0.50 ± 0.47 > − 0.10 ± 0.29 logMAR, P < .001), and final VA improvement (− 0.74 ± 0.61 > − 0.18 ± 0.37 logMAR, P < .001).

Conclusions

Normal to supernormal 30-Hz flicker ERG changes in eyes with CRAO are associated with the milder severity of retinal ischemia and showed better visual function and outcome than the subnormal ERG group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Augsburger JJ, Magargal LE (1980) Visual prognosis following treatment of acute central retinal artery obstruction. Br J Ophthalmol 64:913–917

    Article  CAS  Google Scholar 

  2. Arruga J, Sanders MD (1982) Ophthalmologic findings in 70 patients with evidence of retinal embolism. Ophthalmology 89:1336–1347

    Article  CAS  Google Scholar 

  3. Brown GC, Magargal LE (1982) Central retinal artery obstruction and visual acuity. Ophthalmology 89:14–19

    Article  CAS  Google Scholar 

  4. Atebara NH, Brown GC, Cater J (1995) Efficacy of anterior chamber paracentesis and Carbogen in treating acute nonarteritic central retinal artery occlusion. Ophthalmology 102:2029–2034 (discussion 2034–2025)

    Article  CAS  Google Scholar 

  5. Hayreh SS, Zimmerman MB (2005) Central retinal artery occlusion: visual outcome. Am J Ophthalmol 140:376–391. https://doi.org/10.1016/j.ajo.2005.03.038

    Article  Google Scholar 

  6. Ahn SJ, Kim JM, Hong JH, Woo SJ, Ahn J, Park KH, Han MK, Jung C (2013) Efficacy and safety of intra-arterial thrombolysis in central retinal artery occlusion. Invest Ophthalmol Vis Sci 54:7746–7755. https://doi.org/10.1167/iovs.13-12952

    Article  CAS  Google Scholar 

  7. Ahn SJ, Woo SJ, Park KH, Jung C, Hong JH, Han MK (2015) Retinal and choroidal changes and visual outcome in central retinal artery occlusion: an optical coherence tomography study. Am J Ophthalmol 159(667–676):e661. https://doi.org/10.1016/j.ajo.2015.01.001

    Article  Google Scholar 

  8. Kim HM, Park YJ, Park KH, Woo SJ (2019) Visual field defects and changes in central retinal artery occlusion. PLoS ONE 14:e0209118. https://doi.org/10.1371/journal.pone.0209118

    Article  CAS  Google Scholar 

  9. Henkes HE (1954) Electroretinography in circulatory disturbances of the retina. II. The electroretinogram in cases of occlusion of the central retinal artery or of its branches. AMA Arch Ophthalmol 51:42–53

    Article  CAS  Google Scholar 

  10. Karpe G, Uchermann A (1955) The clinical electroretinogram. VII. The electroretinogram in circulatory disturbances of the retina. Acta Ophthalmol (Copenh) 33:493–516

    Article  CAS  Google Scholar 

  11. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, Bach M (2015) ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 130:1–12. https://doi.org/10.1007/s10633-014-9473-7

    Article  Google Scholar 

  12. Yotsukura J, Adachi-Usami E (1993) Correlation of electroretinographic changes with visual prognosis in central retinal artery occlusion. Ophthalmologica 207:13–18. https://doi.org/10.1159/000310400

    Article  CAS  Google Scholar 

  13. Machida S, Gotoh Y, Tanaka M, Tazawa Y (2004) Predominant loss of the photopic negative response in central retinal artery occlusion. Am J Ophthalmol 137:938–940. https://doi.org/10.1016/j.ajo.2003.10.023

    Article  Google Scholar 

  14. Matsumoto CS, Shinoda K, Yamada K, Nakatsuka K (2009) Photopic negative response reflects severity of ocular circulatory damage after central retinal artery occlusion. Ophthalmologica 223:362–369. https://doi.org/10.1159/000227782

    Article  Google Scholar 

  15. Marmor MF, Zrenner E (1995) Standard for clinical electroretinography (1994 update). Doc Ophthalmol 89:199–210

    Article  CAS  Google Scholar 

  16. Marmor MF, Zrenner E (1998) Standard for clinical electroretinography (1999 update). International society for clinical electrophysiology of vision. Doc Ophthalmol 97:143–156

    Article  Google Scholar 

  17. Johnson MA, Marcus S, Elman MJ, McPhee TJ (1988) Neovascularization in central retinal vein occlusion: electroretinographic findings. Arch Ophthalmol 106:348–352. https://doi.org/10.1001/archopht.1988.01060130374025

    Article  CAS  Google Scholar 

  18. Johnson MA, McPhee TJ (1993) Electroretinographic findings in iris neovascularization due to acute central retinal vein occlusion. Arch Ophthalmol 111:806–814. https://doi.org/10.1001/archopht.1993.01090060094030

    Article  CAS  Google Scholar 

  19. Matsui Y, Katsumi O, Mehta MC, Hirose T (1994) Correlation of electroretinographic and fluorescein angiographic findings in unilateral central retinal vein obstruction. Graefes Arch Clin Exp Ophthalmol 232:449–457. https://doi.org/10.1007/bf00195353

    Article  CAS  Google Scholar 

  20. Yasuda S, Kachi S, Kondo M, Ushida H, Uetani R, Terui T, Piao CH, Terasaki H (2011) Significant correlation between electroretinogram parameters and ocular vascular endothelial growth factor concentration in central retinal vein occlusion eyes. Invest Ophthalmol Vis Sci 52:5737–5742. https://doi.org/10.1167/iovs.10-6923

    Article  Google Scholar 

  21. Miyata R, Kondo M, Kato K, Sugimoto M, Matsubara H, Ikesugi K, Ueno S, Yasuda S, Terasaki H (2018) Supernormal Flicker ERGs in eyes with central retinal vein occlusion: clinical characteristics, prognosis, and effects of anti-VEGF agent. Invest Ophthalmol Vis Sci 59:5854–5861. https://doi.org/10.1167/iovs.18-25087

    Article  CAS  Google Scholar 

  22. David NJ, Saito Y, Heyman A (1961) Arm to retina fluorescein appearance time. A new method of diagnosis of carotid artery occlusion. Arch Neurol 5:165–170

    Article  CAS  Google Scholar 

  23. Bjarnhall G, Maepea O, Sperber GO, Linden C, Monestam E, Alm A (2002) Analysis of mean retinal transit time from fluorescein angiography in human eyes: normal values and reproducibility. Acta Ophthalmol Scand 80:652–655

    Article  CAS  Google Scholar 

  24. Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M, International Society for Clinical Electrophysiology of V (2008 update) (2009) ISCEV Standard for full-field clinical electroretinography. Doc Ophthalmol 118:69–77. https://doi.org/10.1007/s10633-008-9155-4

    Article  CAS  Google Scholar 

  25. Larsson J, Andreasson S (2001) Photopic 30 Hz flicker ERG as a predictor for rubeosis in central retinal vein occlusion. Br J Ophthalmol 85:683–685. https://doi.org/10.1136/bjo.85.6.683

    Article  CAS  Google Scholar 

  26. Lange C, Feltgen N, Junker B, Schulze-Bonsel K, Bach M (2009) Resolving the clinical acuity categories “hand motion” and “counting fingers” using the freiburg visual acuity test (FrACT). Graefes Arch Clin Exp Ophthalmol 247:137–142. https://doi.org/10.1007/s00417-008-0926-0

    Article  CAS  Google Scholar 

  27. Asayama R, Takata H (1965) Electroretinogram in the occlusion of central retinal artery. Nippon Ganka Gakkai Zasshi 69:155–161

    CAS  Google Scholar 

  28. Shinoda K, Yamada K, Matsumoto CS, Kimoto K, Nakatsuka K (2008) Changes in retinal thickness are correlated with alterations of electroretinogram in eyes with central retinal artery occlusion. Graefes Arch Clin Exp Ophthalmol 246:949–954. https://doi.org/10.1007/s00417-008-0791-x

    Article  Google Scholar 

  29. Matsumoto CS, Shinoda K, Nakatsuka K (2011) High correlation of scotopic and photopic electroretinogram components with severity of central retinal artery occlusion. Clin Ophthalmol 5:115–121. https://doi.org/10.2147/OPTH.S16053

    Article  Google Scholar 

  30. McLeod D (2019) Misery perfusion, diffusive oxygen shunting and interarterial watershed infarction underlie oxygenation-based hypoperfusion maculopathy. Am J Ophthalmol. https://doi.org/10.1016/j.ajo.2019.03.015

    Article  Google Scholar 

  31. Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL 3rd (1999) The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 40:1124–1136

    CAS  Google Scholar 

  32. Machida S (2012) Clinical applications of the photopic negative response to optic nerve and retinal diseases. J Ophthalmol 2012:397178. https://doi.org/10.1155/2012/397178

    Article  Google Scholar 

  33. Gouras P, MacKay CJ (1992) Supernormal cone electroretinograms in central retinal vein occlusion. Invest Ophthalmol Vis Sci 33:508–515

    CAS  Google Scholar 

  34. Henkes HE (1953) Electroretinography in circulatory disturbances of the retina. I. Electroretinogram in cases of occlusion of central retinal vein or of one of its branches. AMA Arch Ophthalmol 49:190–201. https://doi.org/10.1001/archopht.1953.00920020195009

    Article  CAS  Google Scholar 

  35. Sakaue H, Katsumi O, Hirose T (1989) Electroretinographic findings in fellow eyes of patients with central retinal vein occlusion. Arch Ophthalmol 107:1459–1462. https://doi.org/10.1001/archopht.1989.01070020533033

    Article  CAS  Google Scholar 

  36. McLeod D, Beatty S (2015) Evidence for an enduring ischaemic penumbra following central retinal artery occlusion, with implications for fibrinolytic therapy. Prog Retin Eye Res 49:82–119. https://doi.org/10.1016/j.preteyeres.2015.06.001

    Article  Google Scholar 

  37. Hayreh SS, Kolder HE, Weingeist TA (1980) Central retinal artery occlusion and retinal tolerance time. Ophthalmology 87:75–78. https://doi.org/10.1016/s0161-6420(80)35283-4

    Article  CAS  Google Scholar 

  38. Hayreh SS, Zimmerman MB, Kimura A, Sanon A (2004) Central retinal artery occlusion. Retinal survival time. Exp Eye Res 78:723–736

    CAS  Google Scholar 

  39. Feng Y, Venema VJ, Venema RC, Tsai N, Caldwell RB (1999) VEGF induces nuclear translocation of Flk-1/KDR, endothelial nitric oxide synthase, and caveolin-1 in vascular endothelial cells. Biochem Biophys Res Commun 256:192–197. https://doi.org/10.1006/bbrc.1998.9790

    Article  CAS  Google Scholar 

  40. Joussen AM, Poulaki V, Qin W, Kirchhof B, Mitsiades N, Wiegand SJ, Rudge J, Yancopoulos GD, Adamis AP (2002) Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. Am J Pathol 160:501–509. https://doi.org/10.1016/S0002-9440(10)64869-9

    Article  CAS  Google Scholar 

  41. Fard MA, Lashey A, Dehpour AR (2010) Aqueous humor nitric oxide in patients with central retinal vein occlusion. Nitric Oxide 23:332–334. https://doi.org/10.1016/j.niox.2010.09.006

    Article  CAS  Google Scholar 

  42. Vielma A, Delgado L, Elgueta C, Osorio R, Palacios AG, Schmachtenberg O (2010) Nitric oxide amplifies the rat electroretinogram. Exp Eye Res 91:700–709. https://doi.org/10.1016/j.exer.2010.08.014

    Article  CAS  Google Scholar 

  43. Sato M, Ohtsuka T, Stell WK (2011) Endogenous nitric oxide enhances the light-response of cones during light-adaptation in the rat retina. Vision Res 51:131–137. https://doi.org/10.1016/j.visres.2010.10.011

    Article  CAS  Google Scholar 

  44. Kim YH, Park KH, Woo SJ (2020) Clinical manifestations and visual prognosis of cilioretinal artery Sparing central retinal artery occlusion. Korean J Ophthal 34(1):27

    Article  Google Scholar 

Download references

Funding

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (No. 2018M3A9B5021319) and a research grant from Seoul National University Bundang Hospital (16-2019-003). The funding organization had no role in the design or conduct of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se Joon Woo.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

Informed consent

Informed consent was obtained from all individual participants included in this study.

Statement of human rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional Ethics Review Board of Seoul National University Bundang Hospital (IRB No. B-1912/582-101) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Statement on the welfare of animals

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.M., Park, K.H. & Woo, S.J. Normal to supernormal 30-Hz flicker ERGs predict visual function and prognosis in central retinal artery occlusion. Doc Ophthalmol 141, 279–292 (2020). https://doi.org/10.1007/s10633-020-09775-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-020-09775-y

Keywords

Navigation