Skip to main content

A comparison of contrast sensitivity and sweep visual evoked potential (sVEP) acuity estimates in normal humans

Abstract

Purpose

Several previous studies have demonstrated that for normal adult subjects the optotype acuity measured with charts is better than the acuity determined with the sweep visual evoked potential (sVEP) using gratings or checks. However, there is no difference in psychophysical measures of acuity with optotype or grating charts. Thus, it is unclear whether the acuity discrepancy between optotype charts and the sVEP result from the stimulus design or other methodological differences. The purpose of this experiment is to determine the relationship between acuities extrapolated from a contrast sensitivity function (CSF) that uses optotypes and the sVEP.

Methods

Normal subjects (N = 10) with acuity of 0.00 logMAR or better (ETDRS chart) were recruited for this study. Two commercially available systems were used to measure CSFs [i.e., the Beethoven System (Ryklin Software, NY) and the qCSF system (Adaptive Sensory Tech, CA)]. The stimuli for the Beethoven were sine wave gratings (0.75–18.50 cpd), and thresholds were determined with a 2-alternative forced choice (2-AFC) procedure combined with a staircase. The stimuli for the qCSF system were spatially filtered letters (10 possible letters, 10-AFC) with the letter sizes and contrasts determined by a Bayesian adaptive procedure. Visual acuity was determined by fitting the data with a double exponential equation and extrapolating the fit to a contrast sensitivity of one. The sVEP was obtained with the PowerDiva (Digital Instrumentation for Visual Assessment, version 3.5, CA). The stimuli were sine wave gratings (80% contrast, 3–36 cpd) counterphased at 7.5 Hz. The final acuity was the average of two estimates each derived from the average of 10 sweeps.

Results

The average logMAR chart (acuity converted to cpd), sVEP, Beethoven, and qCSF acuities were 36.6 ± 4.62 cpd (mean ± SD), 31.2 ± 4.59 cpd, 27.3 ± 7.38 cpd, and 27.6 ± 6.36 cpd, respectively. The logMAR chart acuity was significantly different from the other acuity estimates (all p values < 0.05). The sVEP, Beethoven, and qCSF acuities were not different from one another (all p values > 0.05). The Beethoven and the qCSF acuities had a good intraclass correlation coefficient (ICC = 0.85).

Conclusions

Similar to previous publications, the sVEP acuity estimate was less than the optotype chart acuity. The acuity determined with the sVEP and the CSFs with letter and grating stimuli were not statistically different, suggesting that the difference in acuity with the sVEP and optotype charts does not result from stimulus differences. Other methodological differences must account for the discrepancy in sVEP and optotype chart acuity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Levi DM (2011) Visual Acuity. In: Kaufman PL, Alm A (eds) Adler’s physiology of the eye, 11th edn. Elsevier, Edinburgh, pp 627–647

    Chapter  Google Scholar 

  2. Friedman DS, Munoz B, Massof RW, Bandeen-Roche K, West SK (2002) Grating visual acuity using the preferential-looking method in elderly nursing home residents. Invest Ophthalmol Vis Sci 43(8):2572–2578

    PubMed  Google Scholar 

  3. Thorn F, Schwartz F (1990) Effects of dioptric blur on Snellen and grating acuity. Optom Vis Sci 67(1):3–7

    CAS  Article  Google Scholar 

  4. Fosse P, Valberg A, Arnljot HM (2001) Retinal illuminance and the dissociation of letter and grating acuity in age-related macular degeneration. Optom Vis Sci 78(3):162–168

    CAS  Article  Google Scholar 

  5. White JM, Loshin DS (1989) Grating acuity overestimates Snellen acuity in patients with age-related maculopathy. Optom Vis Sci 66(11):751–755

    CAS  Article  Google Scholar 

  6. Harter MR, White CT (1970) Evoked cortical responses to checkerboard patterns: effect of check-size as a function of visual acuity. Electroencephalogr Clin Neurophysiol 28(1):48–54

    CAS  Article  Google Scholar 

  7. Arden GB, Lewis DR (1973) The pattern visual evoked response in the assessment of visual acuity. Trans Ophthalmol Soc UK 93:39–48

    CAS  PubMed  Google Scholar 

  8. Regan D (1978) Assessment of visual acuity by evoked potential recording: ambiguity caused by temporal dependence of spatial frequency selectivity. Vis Res 18(4):439–443

    CAS  Article  Google Scholar 

  9. Tyler CW, Apkarian P, Levi DM, Nakayama K (1979) Rapid assessment of visual function: an electronic sweep technique for the pattern visual evoked potential. Invest Ophthalmol Vis Sci 18(7):703–713

    CAS  PubMed  Google Scholar 

  10. Howe JW, Mitchell KW, Robson C (1981) Electrophysiological assessment of visual acuity. Trans Ophthalmol Soc UK 101(1):105–108

    CAS  PubMed  Google Scholar 

  11. Norcia AM, Tyler CW (1985) Infant VEP acuity measurements: analysis of individual differences and measurement error. Electroencephalogr Clin Neurophysiol 61(5):359–369

    CAS  Article  Google Scholar 

  12. Norcia AM, Tyler CW (1985) Spatial frequency sweep VEP: visual acuity during the first year of life. Vis Res 25(10):1399–1408

    CAS  Article  Google Scholar 

  13. Norcia AM, Tyler CW, Piecuch R, Clyman R, Grobstein J (1987) Visual acuity development in normal and abnormal preterm human infants. J Pediatr Ophthalmol Strabismus 24(2):70–74

    CAS  PubMed  Google Scholar 

  14. Hamer RD, Norcia AM, Tyler CW, Hsu-Winges C (1989) The development of monocular and binocular VEP acuity. Vis Res 29(4):397–408

    CAS  Article  Google Scholar 

  15. Gottlob I, Fendick MG, Guo S, Zubcov AA, Odom JV, Reinecke RD (1990) Visual acuity measurements by swept spatial frequency visual-evoked-cortical potentials (VECPs): clinical application in children with various visual disorders. J Pediatr Ophthalmol Strabismus 27(1):40–47

    CAS  PubMed  Google Scholar 

  16. Gottlob I, Wizov SS, Odom JV, Reinecke RD (1993) Predicting optotype visual acuity by swept spatial visual-evoked potentials. Clin Vis Sci 8:417–423

    Google Scholar 

  17. Katsumi O, Denno S, Arai M, De Lopes FJ, Hirose T (1997) Comparison of preferential looking acuity and pattern reversal visual evoked response acuity in pediatric patients. Graefes Arch Clin Exp Ophthalmol 235(11):684–690

    CAS  Article  Google Scholar 

  18. Birch EE, Hoffman DR, Uauy R, Birch DG, Prestidge C (1998) Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants. Pediatr Res 44(2):201–209

    CAS  Article  Google Scholar 

  19. Ridder WH 3rd, Rouse MW (2007) Predicting potential acuities in amblyopes: predicting post-therapy acuity in amblyopes. Doc Ophthalmol 114(3):135–145. https://doi.org/10.1007/s10633-007-9048-y

    Article  PubMed  Google Scholar 

  20. Ghasia F, Brunstom J, Tychsen L (2009) Visual acuity and visually evoked responses in children with cerebral palsy: gross motor function classification scale. Br J Ophthalmol 93(8):1068–1072. https://doi.org/10.1136/bjo.2008.156372

    CAS  Article  PubMed  Google Scholar 

  21. Ridder WH 3rd, Tong A, Floresca T (2012) Reliability of acuities determined with the sweep visual evoked potential (sVEP). Doc Ophthalmol 124(2):99–107. https://doi.org/10.1007/s10633-012-9312-7

    Article  PubMed  Google Scholar 

  22. Ridder WH 3rd, Waite BS, Melton TF (2014) Comparing enfant and PowerDiva sweep visual evoked potential (sVEP) acuity estimates. Doc Ophthalmol 129(2):105–114. https://doi.org/10.1007/s10633-014-9457-7

    Article  PubMed  Google Scholar 

  23. Bach M, Maurer JP, Wolf ME (2008) Visual evoked potential-based acuity assessment in normal vision, artificially degraded vision, and in patients. Br J Ophthalmol 92(3):396–403. https://doi.org/10.1136/bjo.2007.130245

    CAS  Article  PubMed  Google Scholar 

  24. Katsumi O, Arai M, Wajima R, Denno S, Hirose T (1996) Spatial frequency sweep pattern reversal VER acuity vs Snellen visual acuity: effect of optical defocus. Vis Res 36(6):903–909

    CAS  Article  Google Scholar 

  25. Wiener DE, Wellish K, Nelson JI, Kupersmith MJ (1985) Comparisons among Snellen, psychophysical, and evoked potential visual acuity determinations. Am J Optom Physiol Opt 62(10):669–679

    CAS  Article  Google Scholar 

  26. Allen D, Norcia AM, Tyler CW (1986) Comparative study of electrophysiological and psychophysical measurement of the contrast sensitivity function in humans. Am J Optom Physiol Opt 63(6):442–449

    CAS  Article  Google Scholar 

  27. Chen SA, Wu LZ, Wu DZ (1990) Objective measurement of contrast sensitivity using the steady-state visual evoked potential. Doc Ophthalmol 75(2):145–153

    CAS  Article  Google Scholar 

  28. Tang Y, Norcia AM (1995) An adaptive filter for steady-state evoked responses. Electroencephalogr Clin Neurophysiol 96(3):268–277

    CAS  Article  Google Scholar 

  29. Meigen T, Bach M (1999) On the statistical significance of electrophysiological steady-state responses. Doc Ophthalmol 98(3):207–232

    CAS  Article  Google Scholar 

  30. Victor JD, Mast J (1991) A new statistic for steady-state evoked potentials. Electroencephalogr Clin Neurophysiol 78(5):378–388

    CAS  Article  Google Scholar 

  31. Pelli DG, Zhang L (1991) Accurate control of contrast on microcomputer displays. Vis Res 31(7–8):1337–1350

    CAS  Article  Google Scholar 

  32. Hou F, Lesmes L, Bex P, Dorr M, Lu ZL (2015) Using 10AFC to further improve the efficiency of the quick CSF method. J Vis 15(9):1–18. https://doi.org/10.1167/15.9.2

    CAS  Article  Google Scholar 

  33. Lesmes LA, Lu ZL, Baek J, Albright TD (2010) Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method. J Vis 10(3):1–21. https://doi.org/10.1167/10.3.17

    Article  PubMed  Google Scholar 

  34. Kiorpes L, Kiper DC, Movshon JA (1993) Contrast sensitivity and vernier acuity in amblyopic monkeys. Vis Res 33(16):2301–2311

    CAS  Article  Google Scholar 

  35. Ridder WH 3rd, Nusinowitz S (2006) The visual evoked potential in the mouse-origins and response characteristics. Vis Res 46(6–7):902–913

    Article  Google Scholar 

  36. Nusinowitz S, Ridder WH 3rd, Ramirez J (2007) Temporal response properties of the primary and secondary rod-signaling pathways in normal and Gnat2 mutant mice. Exp Eye Res 84(6):1104–1114. https://doi.org/10.1016/j.exer.2007.02.009

    CAS  Article  PubMed  Google Scholar 

  37. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    CAS  Article  Google Scholar 

  38. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160

    CAS  Article  Google Scholar 

  39. Arditi A, Cagenello R (1993) On the statistical reliability of letter-chart visual acuity measurements. Invest Ophthalmol Vis Sci 34(1):120–129

    CAS  PubMed  Google Scholar 

  40. Rosser DA, Cousens SN, Murdoch IE, Fitzke FW, Laidlaw DA (2003) How sensitive to clinical change are ETDRS logMAR visual acuity measurements? Invest Ophthalmol Vis Sci 44(8):3278–3281

    Article  Google Scholar 

  41. Arai M, Katsumi O, Paranhos FR, Lopes De Faria JM, Hirose T (1997) Comparison of Snellen acuity and objective assessment using the spatial frequency sweep PVER. Graefes Arch Clin Exp Ophthalmol 235(7):442–447

    CAS  Article  Google Scholar 

  42. Dobson V, Quinn GE, Tung B, Palmer EA, Reynolds JD (1995) Comparison of recognition and grating acuities in very-low-birth-weight children with and without retinal residua of retinopathy of prematurity. Cryotherapy for Retinopathy of Prematurity Cooperative Group. Invest Ophthalmol Vis Sci 36(3):692–702

    CAS  PubMed  Google Scholar 

  43. Ohlendorf A, Schaeffel F (2009) Contrast adaptation induced by defocus: a possible error signal for emmetropization? Vis Res 49(2):249–256. https://doi.org/10.1016/j.visres.2008.10.016

    Article  PubMed  Google Scholar 

  44. Rajeev N, Metha A (2010) Enhanced contrast sensitivity confirms active compensation in blur adaptation. Invest Ophthalmol Vis Sci 51(2):1242–1246. https://doi.org/10.1167/iovs.09-3965

    Article  PubMed  Google Scholar 

  45. Ridder WH 3rd, McCulloch D, Herbert AM (1998) Stimulus duration, neural adaptation, and sweep visual evoked potential acuity estimates. Invest Ophthalmol Vis Sci 39(13):2759–2768

    PubMed  Google Scholar 

  46. Ridder WH 3rd (2004) Methods of visual acuity determination with the spatial frequency sweep visual evoked potential. Doc Ophthalmol 109(3):239–247

    Article  Google Scholar 

  47. Yadav NK, Almoqbel F, Head L, Irving EL, Leat SJ (2009) Threshold determination in sweep VEP and the effects of criterion. Doc Ophthalmol 119(2):109–121. https://doi.org/10.1007/s10633-009-9177-6

    Article  PubMed  Google Scholar 

  48. Bodis-Wollner I, Atkin A, Raab E, Wolkstein M (1977) Visual association cortex and vision in man: pattern-evoked occipital potentials in a blind boy. Science 198(4317):629–631

    CAS  Article  Google Scholar 

  49. Aldrich MS, Alessi AG, Beck RW, Gilman S (1987) Cortical blindness: etiology, diagnosis, and prognosis. Ann Neurol 21(2):149–158. https://doi.org/10.1002/ana.410210207

    CAS  Article  PubMed  Google Scholar 

  50. Rupareliya C, Naqvi S, Hejazi S (2017) Alexia without agraphia: a rare entity. Cureus 9(6):e1304. https://doi.org/10.7759/cureus.1304

    Article  PubMed  PubMed Central  Google Scholar 

  51. McCandliss BD, Cohen L, Dehaene S (2003) The visual word form area: expertise for reading in the fusiform gyrus. Trends Cognit Sci 7(7):293–299

    Article  Google Scholar 

  52. Wenner Y, Heinrich SP, Beisse C, Fuchs A, Bach M (2014) Visual evoked potential-based acuity assessment: overestimation in amblyopia. Doc Ophthalmol 128(3):191–200. https://doi.org/10.1007/s10633-014-9432-3

    Article  PubMed  Google Scholar 

  53. Heinrich SP, Luth I, Bach M (2015) Event-related potentials allow for optotype-based objective acuity estimation. Invest Ophthalmol Vis Sci 56(4):2184–2191. https://doi.org/10.1167/iovs.14-16228

    CAS  Article  PubMed  Google Scholar 

  54. Heinrich SP, Kruger K, Bach M (2010) The effect of optotype presentation duration on acuity estimates revisited. Graefes Arch Clin Exp Ophthalmol 248(3):389–394. https://doi.org/10.1007/s00417-009-1268-2

    Article  PubMed  Google Scholar 

  55. Parish DH, Sperling G (1991) Object spatial frequencies, retinal spatial frequencies, noise, and the efficiency of letter discrimination. Vis Res 31(7–8):1399–1415. https://doi.org/10.1016/0042-6989(91)90060-i

    CAS  Article  PubMed  Google Scholar 

  56. Chung ST, Legge GE, Tjan BS (2002) Spatial-frequency characteristics of letter identification in central and peripheral vision. Vis Res 42(18):2137–2152

    Article  Google Scholar 

  57. Pantle A, Sekuler R (1968) Size-detecting mechanisms in human vision. Science 162(3858):1146–1148. https://doi.org/10.1126/science.162.3858.1146-a

    CAS  Article  PubMed  Google Scholar 

  58. Blakemore C, Campbell FW (1969) Adaptation to spatial stimuli. J Physiol 200(1):11P–13P

    CAS  PubMed  Google Scholar 

  59. Graham N, Robson JG (1987) Summation of very close spatial frequencies: the importance of spatial probability summation. Vis Res 27(11):1997–2007. https://doi.org/10.1016/0042-6989(87)90063-0

    CAS  Article  PubMed  Google Scholar 

  60. Olzak LA, Thomas JP (1992) Configural effects constrain Fourier models of pattern discrimination. Vis Res 32(10):1885–1898. https://doi.org/10.1016/0042-6989(92)90049-o

    CAS  Article  PubMed  Google Scholar 

  61. Olzak LA, Wickens TD (1997) Discrimination of complex patterns: orientation information is integrated across spatial scale; spatial-frequency and contrast information are not. Perception 26(9):1101–1120. https://doi.org/10.1068/p261101

    CAS  Article  PubMed  Google Scholar 

  62. Thomas JP, Olzak LA (1990) Cue summation in spatial discriminations. Vis Res 30(11):1865–1875. https://doi.org/10.1016/0042-6989(90)90164-g

    CAS  Article  PubMed  Google Scholar 

  63. Solomon JA, Pelli DG (1994) The visual filter mediating letter identification. Nature 369(6479):395–397. https://doi.org/10.1038/369395a0

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to Apoorva Karsolia and Deborah Duan for some of the data collection.

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Ridder III.

Ethics declarations

Conflict of interest

The author declares he has no conflict of interest.

Statement of human rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of Ketchum University and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Statement on the welfare of animals

There were no animals used in this study.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ridder, W.H. A comparison of contrast sensitivity and sweep visual evoked potential (sVEP) acuity estimates in normal humans. Doc Ophthalmol 139, 207–219 (2019). https://doi.org/10.1007/s10633-019-09712-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-019-09712-8

Keywords

  • Visual acuity
  • Contrast sensitivity
  • Sweep visual evoked potential
  • Optotypes