Skip to main content

Advertisement

Log in

Riggs-type dominant congenital stationary night blindness: ERG findings, a new GNAT1 mutation and a systemic association

  • Clinical Case Report
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

Complete congenital stationary night blindness (CSNB) is most often x-linked or recessive, and associated with a transmission defect from photoreceptors to bipolar cells. This produces a characteristic “negative” Schubert–Bornschein type of scotopic rod-cone electroretinogram (ERG) with a large a-wave and minimal b-wave. CSNB from abnormalities in phototransduction can be recessive or dominant and is much less common. This produces a Riggs type of ERG with loss of the rod a-wave as well as the b-wave. We report the clinical and ERG findings from a family with autosomal dominant CSNB that was shown previously to have a new GNAT1 mutation with a novel mechanism of action. They provide a classic demonstration of the Riggs-type ERG and have an unusual systemic association.

Methods

Clinical case report of a father and daughter.

Results

A Chinese father and daughter presented with good visual acuity, moderate myopia, and lifelong night blindness. Both show normal fundi except for mild myopia, and fundus autofluorescence and OCT images are normal. Their ERGs illustrate the typical Riggs-type ERG with no rod a-wave (they have only a small cone-dominated combined response). They also have postural orthostatic tachycardia syndrome (POST), which is an autonomic dysfunction disorder thought usually to be sporadic. The retinal gene analyses revealed no abnormalities that might account for POST.

Conclusions

Our family’s ERG showed essentially no rod response, consistent with a Danish GNAT1 pedigree but different from the Nougaret GNAT1 pedigree that shows partial preservation of rod signal. A genetic connection between CSNB and POST would be intriguing, but we found no evidence for this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Zeitz C, Robson AG, Audo I (2015) Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Prog Retin Eye Res 45C:58–110

    Article  Google Scholar 

  2. Schubert G, Bornschein H (1952) Analysis of the human electroretinogram. Ophthalmologica 123(6):396–413

    Article  PubMed  CAS  Google Scholar 

  3. Riggs LA (1954) Electroretinography in cases of night blindness. Am J Ophthalmol 38(1):70–78

    Article  PubMed  CAS  Google Scholar 

  4. Dryja TP, Berson EL, Rao VR, Oprian DD (1993) Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nat Genet 4(3):280–283

    Article  PubMed  CAS  Google Scholar 

  5. Rao VR, Cohen GB, Oprian DD (1994) Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 367(6464):639–642

    Article  PubMed  CAS  Google Scholar 

  6. Al-Jandal N, Farrar GJ, Kiang AS, Humphries MM, Bannon N, Findlay JB, Humphries P, Kenna PF (1999) A novel mutation within the rhodopsin gene (Thr-94-Ile) causing autosomal dominant congenital stationary night blindness. Hum Mutat 13(1):75–81

    Article  PubMed  CAS  Google Scholar 

  7. Zeitz C, Gross AK, Leifert D, Kloeckener-Gruissem B, McAlear SD, Lemke J, Neidhardt J, Berger W (2008) Identification and functional characterization of a novel rhodopsin mutation associated with autosomal dominant CSNB. Invest Ophthalmol Vis Sci 49(9):4105–4114. https://doi.org/10.1167/iovs.08-1717

    Article  PubMed  Google Scholar 

  8. Gal A, Orth U, Baehr W, Schwinger E, Rosenberg T (1994) Heterozygous missense mutation in the rod cGMP phosphodiesterase beta-subunit gene in autosomal dominant stationary night blindness. Nat Genet 7(1):64–68

    Article  PubMed  CAS  Google Scholar 

  9. Manes G, Cheguru P, Majumder A, Bocquet B, Senechal A, Artemyev NO, Hamel CP, Brabet P (2014) A truncated form of rod photoreceptor PDE6 beta-subunit causes autosomal dominant congenital stationary night blindness by interfering with the inhibitory activity of the gamma-subunit. PLoS ONE 9(4):e95768. https://doi.org/10.1371/journal.pone.0095768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Szabo V, Kreienkamp HJ, Rosenberg T, Gal A (2007) p.Gln200Glu, a putative constitutively active mutant of rod alpha-transducin (GNAT1) in autosomal dominant congenital stationary night blindness. Hum Mutat 28(7):741–742. https://doi.org/10.1002/humu.9499

    Article  PubMed  Google Scholar 

  11. Muradov KG, Artemyev NO (2000) Loss of the effector function in a transducin-alpha mutant associated with Nougaret night blindness. J Biol Chem 275(10):6969–6974

    Article  PubMed  CAS  Google Scholar 

  12. Sandberg MA, Pawlyk BS, Dan J, Arnaud B, Dryja TP, Berson EL (1998) Rod and cone function in the Nougaret form of stationary night blindness. Arch Ophthalmol 116(7):867–872

    Article  PubMed  CAS  Google Scholar 

  13. Zeitz C, Méjécase C, Stévenard M, Michiels C, Audo I, Marmor MF (2018) A novel heterozygous missense mutation in GNAT1 leads to autosomal dominant Riggs type of congenital stationary night blindness. Biomed Res Int. https://doi.org/10.1155/2018/7694801

    Article  PubMed  PubMed Central  Google Scholar 

  14. Arnold AC, Ng J, Raj SR (2018) Postural tachycardia syndrome—diagnosis, physiology, and prognosis. Auton Neurosci. https://doi.org/10.1016/j.autneu.2018.02.005

    Article  PubMed  Google Scholar 

  15. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, Bach M (2015) ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 130(1):1–12. https://doi.org/10.1007/s10633-014-9473-7

    Article  PubMed  Google Scholar 

  16. Miyake Y, Yagasaki K, Horiguchi M, Kawase Y, Kanda T (1986) Congenital stationary night blindness with negative electroretinogram. A new classification. Arch Ophthalmol 104(7):1013–1020

    Article  PubMed  CAS  Google Scholar 

  17. Cunier F (1838) Héméralopie héréditaire depuis deux siècles dans une famille de la commune de Vendémian, à cinq lieues de Montpellier. Annal d’Ocul 1:32–34

    Google Scholar 

  18. Nettleship E (1907) A history of congenital stationary night blindness in nine consecutive generations. Trans Ophthal Soc UK 27:269–293

    Google Scholar 

  19. Rosenberg T, Haim M, Piczenik Y, Simonsen SE (1991) Autosomal dominant stationary night-blindness. A large family rediscovered. Acta Ophthalmol (Copenh) 69(6):694–702

    Article  CAS  Google Scholar 

  20. Shirey-Rice JK, Klar R, Fentress HM, Redmon SN, Sabb TR, Krueger JJ, Wallace NM, Appalsamy M, Finney C, Lonce S, Diedrich A, Hahn MK (2013) Norepinephrine transporter variant A457P knock-in mice display key features of human postural orthostatic tachycardia syndrome. Dis Model Mech 6(4):1001–1011. https://doi.org/10.1242/dmm.012203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

MFM received research funding from a Retina Research Foundation award, and used departmental services supported by a grant from Research to Prevent Blindness, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Marmor.

Ethics declarations

Conflict of interest

Neither author has any conflicts of interest.

Human and animal rights

The study conforms to the Declaration of Helsinki. No animals were used.

Informed consent

As a de-identified review entirely from clinical records, this study is exempt from Stanford Medical Center Institutional Review Board requirements and carries waiver of consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marmor, M.F., Zeitz, C. Riggs-type dominant congenital stationary night blindness: ERG findings, a new GNAT1 mutation and a systemic association. Doc Ophthalmol 137, 57–62 (2018). https://doi.org/10.1007/s10633-018-9651-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-018-9651-0

Keywords

Navigation