Miceli D, Reperant J, Bertrand C, Rio JP (1999) Functional anatomy of the avian centrifugal visual system. Behav Brain Res 98(2):203–210
CAS
PubMed
Article
Google Scholar
Reperant J, Miceli D, Vesselkin NP, Molotchnikoff S (1989) The centrifugal visual system of vertebrates: a century-old search reviewed. Int Rev Cytol 118:115–171
CAS
PubMed
Article
Google Scholar
Reperant J, Ward R, Miceli D, Rio JP, Medina M, Kenigfest NB, Vesselkin NP (2006) The centrifugal visual system of vertebrates: a comparative analysis of its functional anatomical organization. Brain Res Rev 52(1):1–57. doi:10.1016/j.brainresrev.2005.11.008
CAS
PubMed
Article
Google Scholar
Avellaneda-Chevrier VK, Wang X, Hooper ML, Chauhan BC (2015) The retino-retinal projection: tracing retinal ganglion cells projecting to the contralateral retina. Neurosci Lett 591:105–109. doi:10.1016/j.neulet.2015.02.033
CAS
PubMed
Article
Google Scholar
Nadal-Nicolas FM, Valiente-Soriano FJ, Salinas-Navarro M, Jimenez-Lopez M, Vidal-Sanz M, Agudo-Barriuso M (2015) Retino-retinal projection in juvenile and young adult rats and mice. Exp Eye Res 134:47–52. doi:10.1016/j.exer.2015.03.015
CAS
PubMed
Article
Google Scholar
Tang X, Tzekov R, Passaglia CL (2016) Retinal cross talk in the mammalian visual system. J Neurophysiol 115(6):3018–3029. doi:10.1152/jn.01137.2015
PubMed
Article
Google Scholar
Lansford TG, Baker HD (1969) Dark adaptation: an interocular light-adaptation effect. Science 164(3885):1307–1309
CAS
PubMed
Article
Google Scholar
Makous W, Teller D, Boothe R (1976) Binocular interaction in the dark. Vis Res 16(5):473–476
CAS
PubMed
Article
Google Scholar
Auerbach E, Peachey NS (1984) Interocular transfer and dark adaptation to long-wave test lights. Vis Res 24(9):1043–1048
CAS
PubMed
Article
Google Scholar
Denny N, Frumkes TE, Barris MC, Eysteinsson T (1991) Tonic interocular suppression and binocular summation in human vision. J Physiol 437:449–460
CAS
PubMed
PubMed Central
Article
Google Scholar
Eysteinsson T, Barris MC, Denny N, Frumkes TE (1993) Tonic interocular suppression, binocular summation, and the visual evoked potential. Invest Ophthalmol Vis Sci 34(8):2443–2448
CAS
PubMed
Google Scholar
Freeman AW, Jolly N (1994) Visual loss during interocular suppression in normal and strabismic subjects. Vis Res 34(15):2043–2050
CAS
PubMed
Article
Google Scholar
Huang PC, Baker DH, Hess RF (2012) Interocular suppression in normal and amblyopic vision: spatio-temporal properties. J Vis. doi:10.1167/12.11.29
Google Scholar
Favreau OE (1978) Interocular transfer of color-contingent motion aftereffects: positive aftereffects. Vis Res 18(7):841–844
CAS
PubMed
Article
Google Scholar
Wade NJ, Swanston MT, de Weert CM (1993) On interocular transfer of motion aftereffects. Perception 22(11):1365–1380
CAS
PubMed
Article
Google Scholar
Nishida S, Ashida H (2000) A hierarchical structure of motion system revealed by interocular transfer of flicker motion aftereffects. Vis Res 40(3):265–278
CAS
PubMed
Article
Google Scholar
Erkelens CJ, Van ER (1997) Capture of the visual direction of monocular objects by adjacent binocular objects. Vis Res 37(13):1735–1745
CAS
PubMed
Article
Google Scholar
Raghunandan A (2011) Binocular capture: the effects of spatial frequency and contrast polarity of the monocular target. Vis Res 51(23–24):2369–2377. doi:10.1016/j.visres.2011.09.011
PubMed
Article
Google Scholar
Kergoat H, Lovasik JV (1994) Unilateral ocular vascular stress in man and retinal responsivity in the contralateral eye. Ophthalmic Physiol Opt 14(4):401–407
CAS
PubMed
Article
Google Scholar
Lovasik JV, Kergoat H, Gagnon M (2005) Experimentally reduced perfusion of one eye impairs retinal function in both eyes. Optom Vis Sci 82(9):850–857
PubMed
Article
Google Scholar
Francis JH, Abramson DH, Marr BP, Brodie SE (2013) Ocular manipulation reduces both ipsilateral and contralateral electroretinograms. Doc Ophthalmol 127(2):113–122. doi:10.1007/s10633-013-9391-0
PubMed
Article
Google Scholar
Polyak SL (1941) The retina. University of Chicago Press, Chicago
Google Scholar
Honrubia FM, Elliott JH (1968) Efferent innervation of the retina. I. Morphologic study of the human retina. Arch Ophthalmol 80(1):98–103
CAS
PubMed
Article
Google Scholar
Brooke RN, Downer Jde C, Powell TP (1965) Centrifugal fibres to the retina in the monkey and cat. Nature 207(5004):1365–1367
CAS
PubMed
Article
Google Scholar
Noback CR, Mettler F (1973) Centrifugal fibers to the retina in the rhesus monkey. Brain Behav Evol 7(5):382–389
CAS
PubMed
Article
Google Scholar
Itaya SK (1980) Retinal efferents from the pretectal area in the rat. Brain Res 201(2):436–441
CAS
PubMed
Article
Google Scholar
Itaya SK, Itaya PW (1985) Centrifugal fibers to the rat retina from the medial pretectal area and the periaqueductal grey matter. Brain Res 326(2):362–365
CAS
PubMed
Article
Google Scholar
Labandeira-Garcia JL, Guerra-Seijas MJ, Gonzalez F, Perez R, Acuna C (1990) Location of neurons projecting to the retina in mammals. Neurosci Res 8(4):291–302
CAS
PubMed
Article
Google Scholar
Frazao R, Pinato L, da Silva AV, Britto LR, Oliveira JA, Nogueira MI (2008) Evidence of reciprocal connections between the dorsal raphe nucleus and the retina in the monkey Cebus apella. Neurosci Lett 430(2):119–123. doi:10.1016/j.neulet.2007.10.032
CAS
PubMed
Article
Google Scholar
Abudureheman A, Nakagawa S (2010) Retinopetal neurons located in the diencephalon of the Japanese monkey (Macaca fuscata). Okajimas Folia Anat Jpn 87(1):17–23
PubMed
Article
Google Scholar
Gastinger MJ, O’Brien JJ, Larsen NB, Marshak DW (1999) Histamine immunoreactive axons in the macaque retina. Invest Ophthalmol Vis Sci 40(2):487–495
CAS
PubMed
PubMed Central
Google Scholar
Gastinger MJ, Bordt AS, Bernal MP, Marshak DW (2005) Serotonergic retinopetal axons in the monkey retina. Curr Eye Res 30(12):1089–1095. doi:10.1080/02713680500371532
CAS
PubMed
PubMed Central
Article
Google Scholar
Yu YC, Satoh H, Wu SM, Marshak DW (2009) Histamine enhances voltage-gated potassium currents of ON bipolar cells in macaque retina. Invest Ophthalmol Vis Sci 50(2):959–965. doi:10.1167/iovs.08-2746
PubMed
Article
Google Scholar
Vila A, Satoh H, Rangel C, Mills SL, Hoshi H, O’Brien J, Marshak DR, Macleish PR, Marshak DW (2012) Histamine receptors of cones and horizontal cells in old world monkey retinas. J Comp Neurol 520(3):528–543. doi:10.1002/cne.22731
CAS
PubMed
PubMed Central
Article
Google Scholar
Sharif NA, Senchyna M (2006) Serotonin receptor subtype mRNA expression in human ocular tissues, determined by RT-PCR. Mol Vis 12:1040–1047
CAS
PubMed
Google Scholar
Dowling JE, Boycott BB (1966) Organization of the primate retina: electron microscopy. Proc R Soc Lond B Biol Sci 166(1002):80–111
CAS
PubMed
Article
Google Scholar
Dowling JE, Boycott BB (1969) Retinal ganglion cells: a correlation of anatomical and physiological approaches. UCLA Forum Med Sci 8:145–161
CAS
PubMed
Google Scholar
Honrubia FM, Elliott JH (1970) Efferent innervation of the retina. II. Morphologic study of the monkey retina. Invest Ophthalmol 9(12):971–976
CAS
PubMed
Google Scholar
Anderson DR (1973) Ascending and descending optic atrophy produced experimentally in squirrel monkeys. Am J Ophthalmol 76(5):693–711
CAS
PubMed
Article
Google Scholar
Khosla PK, Saini JS, Gahlot DK, Ratnakar KS (1981) Effect of optic nerve sectioning on e.r.g. (a electrophysiological and histological experimental study). Indian J Ophthalmol 29(3):263–267
CAS
PubMed
Google Scholar
Silveira LC, Perry VH (1990) A neurofibrillar staining method for retina and skin: a simple modification for improved staining and reliability. J Neurosci Methods 33(1):11–21
CAS
PubMed
Article
Google Scholar
Usai C, Ratto GM, Bisti S (1991) Two systems of branching axons in monkey’s retina. J Comp Neurol 308(2):149–161. doi:10.1002/cne.903080202
CAS
PubMed
Article
Google Scholar
Perry VH, Oehler R, Cowey A (1984) Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience 12(4):1101–1123
CAS
PubMed
Article
Google Scholar
Polyak SL (1957) The vertebrate visual system; its origin, structure, and function and its manifestations in disease with an analysis of its role in the life of animals and in the origin of man, preceded by a historical review of investigations of the eye, and of the visual pathways and centers of the brain. University of Chicago Press, Chicago
Warrington WB, Dutton JE (1900) Observations of the course of the optic fibers in a case of unilateral optic atrophy. Brain 23(4):642–656
Article
Google Scholar
Liss L, Wolter JR (1956) Centrifugal (antidromic) nerve fibers in the optic nerve of man. Albrecht Von Graefes Arch Ophthalmol 158(1):1–7
CAS
PubMed
Article
Google Scholar
Knöferle J, Koch JC, Ostendorf T, Michel U, Planchamp V, Vutova P, Tönges L, Stadelmann C, Brück W, Bähr M, Lingor P (2010) Mechanisms of acute axonal degeneration in the optic nerve in vivo. Proc Natl Acad Sci 107(13):6064–6069. doi:10.1073/pnas.0909794107
PubMed
PubMed Central
Article
Google Scholar
Vanburen JM (1963) Trans-synaptic retrograde degeneration in the visual system of primates. J Neurol Neurosurg Psychiatry 26:402–409
CAS
PubMed
Article
Google Scholar
Wolter JR (1965) The centrifugal nerves in the human optic tract, chiasm, optic nerve, and retina. Trans Am Ophthalmol Soc 63:678–707
CAS
PubMed
PubMed Central
Google Scholar
Ventura J, Mathieu M (1960) Silver impregnation of whole retinas. Arch Ophthalmol 64:528–535
CAS
PubMed
Article
Google Scholar
Wolter JR (1957) Ending of centrifugal nerve fibers on the blood vessels of the human retina. Albrecht Von Graefes Arch Ophthalmol 158(6):524–531
CAS
PubMed
Article
Google Scholar
Wolter JR (1961) Diabetic retinopathy. Am J Ophthalmol 51:1123–1141
CAS
PubMed
Google Scholar
Pfister RR, Wolter JR (1963) Centrifugal fibers of the human optic nerve. A study made five days after enucleation. Neurology 13:38–42
CAS
PubMed
Article
Google Scholar
Wolter JR, Knoblich RR (1965) Pathway of centrifugal fibres in the human optic nerve, chiasm, and tract. Br J Ophthalmol 49:246–250
CAS
PubMed
PubMed Central
Article
Google Scholar
Wolter JR, Moorman LT (1966) Early effects of photocoagulation on the nerve fiber layer of the human retina. Arch Ophthalmol 76(3):385–390
CAS
PubMed
Article
Google Scholar
Wolter JR, Lund OE (1968) Reaction of centrifugal nerves in the human retina two weeks after photocoagulation. Trans Am Ophthalmol Soc 66:173–195
CAS
PubMed
PubMed Central
Article
Google Scholar
Sacks JG, Lindenberg R (1969) Efferent nerve fibers in the anterior visual pathways in bilateral congenital cystic eyeballs. Am J Ophthalmol 68(4):691–695
CAS
PubMed
Article
Google Scholar
Reperant J, Gallego A (1976) Centrifugal fibers in the human retina. Arch Anat Microsc Morphol Exp 65(2):103–120
CAS
PubMed
Google Scholar
Wolter JR (1979) Electron microscopic demonstration of centrifugal nerve fibers in the human optic nerve. Albrecht Von Graefes Arch Klin Exp Ophthalmol 210(1):31–41
CAS
PubMed
Article
Google Scholar
Wolter JR (1991) Reaction of centrifugal nerves in perforated peripheral retina. Neuro-Ophthalmology 11(4):189–193. doi:10.3109/01658109109036955
Article
Google Scholar
Thanos S (1999) Genesis, neurotrophin responsiveness, and apoptosis of a pronounced direct connection between the two eyes of the chick embryo: a natural error or a meaningful developmental event? J Neurosci 19(10):3900–3917
CAS
PubMed
Google Scholar
Bunt SM, Lund RD (1981) Development of a transient retino-retinal pathway in hooded and albino rats. Brain Res 211(2):399–404
CAS
PubMed
Article
Google Scholar
Muller M, Hollander H (1988) A small population of retinal ganglion cells projecting to the retina of the other eye. An experimental study in the rat and the rabbit. Exp Brain Res 71(3):611–617
CAS
PubMed
Article
Google Scholar
Dean G, Usher CH (1896) Experimental research on the course of the optic fibers. Trans Ophthalmol Soc UK 16:248–276
Google Scholar
Dean G, Usher CH (1903) Experimental research on the cours4e of the optic fibers. Brian 26:524–546
Article
Google Scholar
Parsons J (1902) Degenerations following lesions of the retin in monkeys. Brain 25:257–269
Article
Google Scholar
Pick A, Herrenheiser J (1895) Untersuchungen über die topographischen Beziehungen zwischen Retina, Opticus und gekreuztem Tractus opticus beim Kaninchen. Nova Acta der Kaiserl Leop Carol Deutchen Acad der Naturf 66(1):1–24
Google Scholar
Meyer A (1904) The anatomical facts and clinical varieties of traumatic insanity. Am J Insanity 60(3):373–441
Google Scholar
Molotchnikoff S, Lachapelle P, Casanova C (1989) Optic nerve blockade influences the retinal responses to flash in rabbits. Vis Res 29(8):957–963
CAS
PubMed
Article
Google Scholar
Borg E, Knave B (1971) Long-term changes in the ERG following transection of the optic nerve in the rabbit. Acta Physiol Scand 82(2):277–281. doi:10.1111/j.1748-1716.1971.tb04968.x
CAS
PubMed
Article
Google Scholar
Jacobson JH, Suzuki TA (1962) Effects of optic nerve section on the ERG. Arch Ophthalmol 67:791–801
CAS
PubMed
Article
Google Scholar
Galambos R, Juhasz G, Kekesi AK, Nyitrai G, Szilagyi N (1994) Natural sleep modifies the rat electroretinogram. Proc Natl Acad Sci USA 91(11):5153–5157
CAS
PubMed
PubMed Central
Article
Google Scholar
Molotchnikoff S, Tremblay F (1983) Influence of the visual cortex on responses of retinal ganglion cells in the rat. J Neurosci Res 10(4):397–409. doi:10.1002/jnr.490100407
CAS
PubMed
Article
Google Scholar
Jacobson JH, Gestring GF (1958) Centrifugal influence upon the electroretinogram. AMA Arch Ophthalmol 60(2):295–302
CAS
PubMed
Article
Google Scholar
Haft JS, Harman PJ (1967) Evidence for central inhibition of retinal function. Vision Res 7(5):499–501
CAS
PubMed
Article
Google Scholar
Haft JS (1968) Further remarks on evidence for central inhibition of retinal function. Vis Res 8(3):319–323
CAS
PubMed
Article
Google Scholar
Abe N (1962) Effect of section and compression of the optic nerve on the ERG in the rabbit. Tohoku J Exp Med 78:223–227
CAS
PubMed
Article
Google Scholar
Mirsky AF, Bloch S, Tecce JJ, Lessell S, Marcus E (1973) Visual evoked potentials during experimentally induced spike-wave activity in monkeys. Electroencephalogr Clin Neurophysiol 35(1):25–37
CAS
PubMed
Article
Google Scholar
Maffei L, Fiorentini A, Bisti S, Hollander H (1985) Pattern ERG in the monkey after section of the optic nerve. Exp Brain Res 59(2):423–425
CAS
PubMed
Article
Google Scholar
Maertz NA, Kim CB, Nork TM, Levin LA, Lucarelli MJ, Kaufman PL, Ver Hoeve JN (2006) Multifocal visual evoked potentials in the anesthetized non-human primate. Curr Eye Res 31(10):885–893. doi:10.1080/02713680600899648
PubMed
Article
Google Scholar
Ogden TE, Brown KT (1964) Intraretinal responses of the cynamolgus monkey to electrical stimulation of the optic nerve and retina. J Neurophysiol 27:682–705
CAS
PubMed
Google Scholar
Ogden TE (1966) Intraretinal slow potentials evoked by brain stimulation in the primate. J Neurophysiol 29(5):898–908
CAS
PubMed
Google Scholar
Gouras P (1969) Antidromic responses of orthodromically identified ganglion cells in monkey retina. J Physiol 204(2):407–419
CAS
PubMed
PubMed Central
Article
Google Scholar
Ogden TE (1973) The oscillatory waves of the primate electroretinogram. Vis Res 13(6):1059–1074
CAS
PubMed
Article
Google Scholar
Ogden TE (1973) The proximal negative response of the primate retina. Vis Res 13(4):797–807
CAS
PubMed
Article
Google Scholar
Fukuda Y, Watanabe M, Wakakuwa K, Sawai H, Morigiwa K (1988) Intraretinal axons of ganglion cells in the Japanese monkey (Macaca fuscata): conduction velocity and diameter distribution. Neurosci Res 6(1):53–71
CAS
PubMed
Article
Google Scholar
Fukuda Y, Sawai H, Watanabe M, Wakakuwa K, Morigiwa K (1989) Nasotemporal overlap of crossed and uncrossed retinal ganglion cell projections in the Japanese monkey (Macaca fuscata). J Neurosci 9(7):2353–2373
CAS
PubMed
Google Scholar
Raviola E, Raviola G (1982) Structure of the synaptic membranes in the inner plexiform layer of the retina: a freeze-fracture study in monkeys and rabbits. J Comp Neurol 209(3):233–248. doi:10.1002/cne.902090303
CAS
PubMed
Article
Google Scholar
Kenyon GT, Travis BJ, Theiler J, George JS, Stephens GJ, Marshak DW (2004) Stimulus-specific oscillations in a retinal model. IEEE Trans Neural Netw 15(5):1083–1091. doi:10.1109/TNN.2004.832722
PubMed
Article
Google Scholar
Hood DC, Frishman LJ, Saszik S, Viswanathan S (2002) Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci 43(5):1673–1685
PubMed
Google Scholar
Gastinger MJ, Barber AJ, Vardi N, Marshak DW (2006) Histamine receptors in mammalian retinas. J Comp Neurol 495(6):658–667. doi:10.1002/cne.20902
CAS
PubMed
PubMed Central
Article
Google Scholar
Nork TM, Kim CB, Heatley GA, Kaufman PL, Lucarelli MJ, Levin LA, Ver Hoeve JN (2010) Serial multifocal electroretinograms during long-term elevation and reduction of intraocular pressure in non-human primates. Doc Ophthalmol 120(3):273–289. doi:10.1007/s10633-010-9231-4
PubMed
PubMed Central
Article
Google Scholar
Nork TM, Kim CB, Munsey KM, Dashek RJ, Hoeve JN (2014) Regional choroidal blood flow and multifocal electroretinography in experimental glaucoma in rhesus macaques. Invest Ophthalmol Vis Sci 55(12):7786–7798. doi:10.1167/iovs.14-14527
CAS
PubMed
PubMed Central
Article
Google Scholar
Hood DC, Frishman LJ, Viswanathan S, Robson JG, Ahmed J (1999) Evidence for a ganglion cell contribution to the primate electroretinogram (ERG): effects of TTX on the multifocal ERG in macaque. Vis Neurosci 16(3):411–416
CAS
PubMed
Article
Google Scholar
Hare WA, Ton H (2002) Effects of APB, PDA, and TTX on ERG responses recorded using both multifocal and conventional methods in monkey. Effects of APB, PDA, and TTX on monkey ERG responses. Doc Ophthalmol 105(2):189–222
PubMed
Article
Google Scholar
Hare WA, WoldeMussie E, Lai RK, Ton H, Ruiz G, Chun T, Wheeler L (2004) Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: functional measures. Invest Ophthalmol Vis Sci 45(8):2625–2639. doi:10.1167/iovs.03-0566
PubMed
Article
Google Scholar
Sutter EE, Bearse MA Jr (1999) The optic nerve head component of the human ERG. Vis Res 39(3):419–436
CAS
PubMed
Article
Google Scholar
Hood DC, Bearse MA Jr, Sutter EE, Viswanathan S, Frishman LJ (2001) The optic nerve head component of the monkey’s (Macaca mulatta) multifocal electroretinogram (mERG). Vis Res 41(16):2029–2041
CAS
PubMed
Article
Google Scholar
Perry VH, Cowey A (1985) The ganglion cell and cone distributions in the monkey’s retina: implications for central magnification factors. Vis Res 25(12):1795–1810
CAS
PubMed
Article
Google Scholar
Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300(1):5–25. doi:10.1002/cne.903000103
CAS
PubMed
Article
Google Scholar
Jonas JB, Schneider U, Naumann GO (1992) Count and density of human retinal photoreceptors. Graefes Arch Clin Exp Ophthalmol 230(6):505–510
CAS
PubMed
Article
Google Scholar
Silveira LC, Perry VH (1991) The topography of magnocellular projecting ganglion cells (M-ganglion cells) in the primate retina. Neuroscience 40(1):217–237
CAS
PubMed
Article
Google Scholar
Silveira LC, Perry VH, Yamada ES (1993) The retinal ganglion cell distribution and the representation of the visual field in area 17 of the owl monkey, Aotus trivirgatus. Vis Neurosci 10(5):887–897
CAS
PubMed
Article
Google Scholar
Silva MF, Maia-Lopes S, Mateus C, Guerreiro M, Sampaio J, Faria P, Castelo-Branco M (2008) Retinal and cortical patterns of spatial anisotropy in contrast sensitivity tasks. Vis Res 48(1):127–135. doi:10.1016/j.visres.2007.10.018
PubMed
Article
Google Scholar
Silva MF, Mateus C, Reis A, Nunes S, Fonseca P, Castelo-Branco M (2010) Asymmetry of visual sensory mechanisms: electrophysiological, structural, and psychophysical evidences. J Vis 10(6):26. doi:10.1167/10.6.26
PubMed
Article
Google Scholar
Wirth A (1951) Note on the mechanism of inter-retinal reflexes. Boll Ocul 30(8):499–504
CAS
PubMed
Google Scholar
Dodt E (1951) On the electrophysiology of the eye. I. Secondary elevation of the electroretinogram in response to illumination. Albrecht Von Graefes Arch Ophthalmol 151(7–8):672–692
CAS
PubMed
Article
Google Scholar
Motokawa K, Nakagawa D, Kohata T (1956) Electrophysiological studies of binocular stereoscopic vision. J Comp Physiol Psychol 49(4):398–403
CAS
PubMed
Article
Google Scholar
Steindler P, Cardin P, Perrone S (1981) The electric consensual response of the non-stimulated eye in normal subjects and patients with optic atrophy. Albrecht Von Graefes Arch Klin Exp Ophthalmol 216(2):121–127
CAS
PubMed
Article
Google Scholar
Uchermann A (1955) The electroretinogram on binocular and monocular light stimulation. Acta Ophthalmol (Copenh) 33(5):517–522
CAS
Article
Google Scholar
Bagolini B (1959) The electroretinogram during monocular and binocular stimulations. Boll Ocul 38:605–615
CAS
PubMed
Google Scholar
Monnier M (1946) Les manifestations electriques consensuelles de l’activite retinienne chez l’homme (electroretinographie binoculaire). Experientia 2:190
CAS
PubMed
Article
Google Scholar
Monnier M (1949) L’electro-retinogramme de l’homme. Electroencephalogr Clin Neurophysiol 1(1):87–108
CAS
PubMed
Article
Google Scholar
Marg E (1953) The effect of stimulus size and retinal illuminance on the human electroretinogram. Am J Optom Arch Am Acad Optom 30(8):417–433
CAS
PubMed
Article
Google Scholar
Hellner KA (1964) Efferent inhibition of single erg-responses by flicker-stimulation of the contralateral eye in man. Doc Ophthalmol 18:431–439
CAS
PubMed
Article
Google Scholar
Nikitopoulou-Maratou G, Vassiliou GA, Kepetzis M, Molyvdas PA (1980) ERG alterations induced by sound. Neurochem Int 1C:355–365
CAS
PubMed
Article
Google Scholar
Hernandez-Peon R, Scherrer H, Jouvet M (1956) Modification of electric activity in cochlear nucleus during attention in unanesthetized cats. Science 123(3191):331–332
CAS
PubMed
Article
Google Scholar
Lindsley DB (1960) Attention, consciousness, sleep and wakefulness. In: Field J, Magoun HW, Hall VA (eds) Handbook of physiology. American Physiological Society, Washington, DC, pp 1553–1593
Google Scholar
Spinelli DN, Weingarten M (1966) Afferent and efferent activity in single units of the cat’s optic nerve. Exp Neurol 15(3):347–362
CAS
PubMed
Article
Google Scholar
Van Hasselt P (1972) The centrifugal control of retinal function. Ophthalmic Res 4(5):298–320
Article
Google Scholar
Luck SJ, Woodman GF, Vogel EK (2000) Event-related potential studies of attention. Trends Cogn Sci 4(11):432–440
CAS
PubMed
Article
Google Scholar
Naatanen R (1975) Selective attention and evoked potentials in humans–a critical review. Biol Psychol 2(4):237–307
CAS
PubMed
Article
Google Scholar
Eason RG (1984) Selective attention effects on retinal and forebrain responses in humans: a replication and extension. Bull Psychon Soc 22(4):341–344. doi:10.3758/bf03333837
Article
Google Scholar
Wasserman GS, Bolbecker AR, Li J, Lim-Kessler CC (2010) No retinal efference in humans: an urban legend. Proc Fechner Day 26(1):257–262
Google Scholar
Wasserman GS, Bolbecker AR, Li J, Lim-Kessler CC (2011) A top-down and bottom-up component of visual attention. Cognitive Comput 3(1):294–302
Article
Google Scholar
Kahneman D, Beatty J (1966) Pupil diameter and load on memory. Science 154(3756):1583–1585
CAS
PubMed
Article
Google Scholar
Mathot S, Van der Stigchel S (2015) New light on the mind’s eye: the pupillary light response as active vision. Curr Dir Psychol Sci 24(5):374–378. doi:10.1177/0963721415593725
PubMed
PubMed Central
Article
Google Scholar
Anthony BJ, Graham FK (1985) Blink reflex modification by selective attention: evidence for the modulation of ‘automatic’ processing. Biol Psychol 21(1):43–59
CAS
PubMed
Article
Google Scholar
Hackley SA, Woldorff M, Hillyard SA (1990) Cross-modal selective attention effects on retinal, myogenic, brainstem, and cerebral evoked potentials. Psychophysiology 27(2):195–208
CAS
PubMed
Article
Google Scholar
Eason RG, Flowers L, Oakley M (1983) Differentiation of retinal and nonretinal contributions to averaged evoked responses obtained with electrodes placed near the eyes. Behav Res Methods Instrum 15(1):13–21. doi:10.3758/bf03203432
Article
Google Scholar
Eason RG, Oakley M, Flowers L (1983) Central neural influences on the human retina during selective attention. Physiol Psychol 11(1):18–28. doi:10.3758/bf03326765
Article
Google Scholar
Mangun GR, Hansen JC, Hillyard SA (1986) Electroretinograms reveal no evidence for centrifugal modulation of retinal inputs during selective attention in man. Psychophysiology 23(2):156–165
CAS
PubMed
Article
Google Scholar
Karpe G (1945) The basis of clinical electroretinography. Acta Ophthalmol Suppl 24:1–118
Google Scholar
Dieterle P, Babel J (1955) Diagnostic importance of simultaneous registration of the electroretinogram and the electroencephalogram (retinocortical time measurement) in optic tract diseases. Ophthalmologica 129(4–5):245–247
CAS
PubMed
Article
Google Scholar
Suzuki TA (1959) ERG of congenital totally color-weak eye accompanied by lesion of optic nerve. Arch Ophthalmol 62:386–395
CAS
PubMed
Article
Google Scholar
Gills JP Jr (1966) The electroretinogram after section of the optic nerve in man. Am J Ophthalmol 62(2):287–291
PubMed
Article
Google Scholar
Feinsod M, Auerbach E (1973) Electrophysiological examinations of the visual system in the acute phase after head injury. Eur Neurol 9(1):56–64
CAS
PubMed
Article
Google Scholar
Hillman JS, Myska V, Nissim S (1975) Complete avulsion of the optic nerve. A clinical, angiographic, and electrodiagnostic study. Br J Ophthalmol 59(9):503–509
CAS
PubMed
PubMed Central
Article
Google Scholar
Müller W, Schmöger E (1981) Postoperative electrophysiological findings in patients with pituitary adenoma. In: Spekreijse H, Apkarian PA (eds) Visual pathways: electrophysiology and pathology. Springer, Dordrecht, pp 203–211. doi:10.1007/978-94-009-8656-5_21
Chapter
Google Scholar
Dawson WW, Maida TM, Rubin ML (1982) Human pattern-evoked retinal responses are altered by optic atrophy. Invest Ophthalmol Vis Sci 22(6):796–803
CAS
PubMed
Google Scholar
Feinsod M, Rowe H, Auerbach E (1971) Changes in the electroretinogram in patients with optic nerve lesions. Doc Ophthalmol 29(2):169–200
CAS
PubMed
Article
Google Scholar
Feinsod M, Auerbach E (1971) The electroretinogram and the visual evoked potential in two patients with tuberculum sellae meningioma before and after decompression of the optic nerve. Ophthalmologica 163(5):360–368
CAS
PubMed
Article
Google Scholar
Ikeda H, Tremain KE, Sanders MD (1978) Neurophysiological investigation in optic nerve disease: combined assessment of the visual evoked response and electroretinogram. Br J Ophthalmol 62(4):227–239
CAS
PubMed
PubMed Central
Article
Google Scholar
Kaitz M, Perlman I, Ovadia N, Ankava D, Auerbach E, Feinsod M (1982) Visual defects in the uninjured eye of patients with unilateral eye injury. Doc Ophthalmol 53(2):179–190
CAS
PubMed
Article
Google Scholar
Wachtmeister L, El Azazi M (1985) Oscillatory potentials of the electroretinogram in patients with unilateral optic atrophy. Ophthalmologica 191(1):39–50
CAS
PubMed
Article
Google Scholar
Vaegan Graham SL, Goldberg I, Buckland L, Hollows FC (1995) Flash and pattern electroretinogram changes with optic atrophy and glaucoma. Exp Eye Res 60(6):697–706
CAS
PubMed
Article
Google Scholar
Fraser CL, Holder GE (2011) Electroretinogram findings in unilateral optic neuritis. Doc Ophthalmol 123(3):173–178. doi:10.1007/s10633-011-9294-x
PubMed
Article
Google Scholar
Smith KJ, McDonald WI (1999) The pathophysiology of multiple sclerosis: the mechanisms underlying the production of symptoms and the natural history of the disease. Philos Trans R Soc Lond B Biol Sci 354(1390):1649–1673. doi:10.1098/rstb.1999.0510
CAS
PubMed
PubMed Central
Article
Google Scholar
Pittock SJ, Lucchinetti CF (2007) The pathology of MS: new insights and potential clinical applications. Neurologist 13(2):45–56. doi:10.1097/01.nrl.0000253065.31662.37
PubMed
Article
Google Scholar
Landois L (1904) The cranial nerves. In: Brubaker AP (ed) Textbook of human physiology, including histology and human anatomy, 10th edn. Blakiston's Son & Co., Philadelphia, p 529
Landois L (1904) The visual apparatus. In: Brubaker AP (ed) Textbook of human physiology, including histology and microscopic anatomy. P. Blakiston’s, Philadelphia, p 819
Google Scholar
Tigerstedt R (1910) Vision. In: Murlin JR (ed) A textbook of human physiology. Appleton, New York, p 515
Google Scholar
Bronson-Castain K, Bearse MA, Han Y, Schneck ME, Adams AJ (2005) An order effect in sequential testing using the multifocal electroretinogram (mfERG). Invest Ophthalmol Vis Sci 46(13):3437
Google Scholar
Simonsen SE (1966) ERG in diabet. In: Paper presented at the clinical value of electroretinography. Symposium held in connection with the 20th International Congress of Ophthalmology Munich, August
Gastinger MJ, Barber AJ, Khin SA, McRill CS, Gardner TW, Marshak DW (2001) Abnormal centrifugal axons in streptozotocin-diabetic rat retinas. Invest Ophthalmol Vis Sci 42(11):2679–2685
CAS
PubMed
PubMed Central
Google Scholar
Bodeutsch N, Siebert H, Dermon C, Thanos S (1999) Unilateral injury to the adult rat optic nerve causes multiple cellular responses in the contralateral site. J Neurobiol 38(1):116–128
CAS
PubMed
Article
Google Scholar
Panagis L, Thanos S, Fischer D, Dermon CR (2005) Unilateral optic nerve crush induces bilateral retinal glial cell proliferation. Eur J Neurosci 21(8):2305–2309. doi:10.1111/j.1460-9568.2005.04046.x
CAS
PubMed
Article
Google Scholar