Skip to main content

Advertisement

Log in

Comparison of human expert and computer-automated systems using magnitude-squared coherence (MSC) and bootstrap distribution statistics for the interpretation of pattern electroretinograms (PERGs) in infants with optic nerve hypoplasia (ONH)

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

Pattern electroretinograms (PERGs) have inherently low signal-to-noise ratios and can be difficult to detect when degraded by pathology or noise. We compare an objective system for automated PERG analysis with expert human interpretation in children with optic nerve hypoplasia (ONH) with PERGs ranging from clear to undetectable.

Methods

PERGs were recorded uniocularly with chloral hydrate sedation in children with ONH (aged 3.5–35 months). Stimuli were reversing checks of four sizes focused using an optical system incorporating the cycloplegic refraction. Forty PERG records were analysed; 20 selected at random and 20 from eyes with good vision (fellow eyes or eyes with mild ONH) from over 300 records. Two experts identified P50 and N95 of the PERGs after manually deleting trials with movement artefact, slow-wave EEG (4–8 Hz) or other noise from raw data for 150 check reversals. The automated system first identified present/not-present responses using a magnitude-squared coherence criterion and then, for responses confirmed as present, estimated the P50 and N95 cardinal positions as the turning points in local third-order polynomials fitted in the −3 dB bandwidth [0.25 … 45] Hz. Confidence limits were estimated from bootstrap re-sampling with replacement. The automated system uses an interactive Internet-available webpage tool (see http://clinengnhs.liv.ac.uk/esp_perg_1.htm).

Results

The automated system detected 28 PERG signals above the noise level (p ≤ 0.05 for H0). Good subjective quality ratings were indicative of significant PERGs; however, poor subjective quality did not necessarily predict non-significant signals. P50 and N95 implicit times showed good agreement between the two experts and between experts and the automated system. For the N95 amplitude measured to P50, the experts differed by an average of 13 % consistent with differing interpretations of peaks within noise, while the automated amplitude measure was highly correlated with the expert measures but was proportionally larger. Trial-by-trial review of these data required approximately 6.5 h for each human expert, while automated data processing required <4 min, excluding overheads relating to data transfer.

Conclusions

An automated computer system for PERG analysis, using a panel of signal processing and statistical techniques, provides objective present/not-present detection and cursor positioning with explicit confidence intervals. The system achieves, within an efficient and robust statistical framework, estimates of P50 and N95 amplitudes and implicit times similar to those of clinical experts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Holder GE (2001) Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20(4):531–561

    Article  CAS  PubMed  Google Scholar 

  2. Luo XD, Frishman LJ (2011) Retinal pathway origins of the pattern electroretinogram (PERG). Invest Ophthalmol Vis Sci 52(12):8571–8584

    Article  PubMed Central  PubMed  Google Scholar 

  3. Holder GE et al (1998) Electrophysiological findings in dominant optic atrophy (DOA) linking to the OPA1 locus on chromosome 3q 28-qter. Doc Ophthalmol 95(3–4):217–228

    Article  PubMed  Google Scholar 

  4. Harrison JM et al (1987) The pattern erg in man following surgical resection of the optic-nerve. Invest Ophthalmol Vis Sci 28(3):492–499

    CAS  PubMed  Google Scholar 

  5. Lambert SR, Hoyt CS, Narahara MH (1987) Optic-nerve hypoplasia. Surv Ophthalmol 32(1):1–9

    Article  CAS  PubMed  Google Scholar 

  6. Borchert M et al (1995) Clinical-assessment, optic disk measurements, and visual-evoked potential in optic-nerve hypoplasia. Am J Ophthalmol 120(5):605–612

    Article  CAS  PubMed  Google Scholar 

  7. Hoyt CS, Billson FA (1986) Optic-nerve hypoplasia—changing perspectives. Aust N Z J Ophthalmol 14(4):325–331

    Article  CAS  PubMed  Google Scholar 

  8. Skarf B, Hoyt CS (1984) Optic-nerve hypoplasia in children—association with anomalies of the endocrine and CNS. Arch Ophthalmol 102(1):62–67

    Article  CAS  PubMed  Google Scholar 

  9. Zeki SM, Dudgeon J, Dutton GN (1991) Reappraisal of the ratio of disk to macula disk diameter in optic-nerve hypoplasia. Br J Ophthalmol 75(9):538–541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Janaky M et al (1994) Electrophysiologic alterations in patients with optic-nerve hypoplasia. Doc Ophthalmol 86(3):247–257

    Article  CAS  PubMed  Google Scholar 

  11. Hoyt CS, Good WV (1992) Do we really understand the difference between optic-nerve hypoplasia and atrophy. Eye 6:201–204

    Article  PubMed  Google Scholar 

  12. Ouvrier R, Billson F (1986) Optic-nerve hypoplasia—a review. J Child Neurol 1(3):181–188

    Article  CAS  PubMed  Google Scholar 

  13. Kriss A, Russelleggitt I (1992) Electrophysiological assessment of visual pathway function in infants. Eye 6:145–153

    Article  PubMed  Google Scholar 

  14. McCulloch DL et al (2007) Retinal function in infants with optic nerve hypoplasia: electroretinograms to large patterns and photopic flash. Eye 21(6):712–720

    Article  CAS  PubMed  Google Scholar 

  15. McCulloch DL et al (2010) Clinical electrophysiology and visual outcome in optic nerve hypoplasia. Br J Ophthalmol 94(8):1017–1023

    Article  CAS  PubMed  Google Scholar 

  16. Garcia-Filion P et al (2008) Neuroradiographic, endocrinologic, and ophthalmic correlates of adverse developmental outcomes in children with optic nerve hypoplasia: a prospective study. Pediatrics 121(3):E653–E659

    Article  PubMed  Google Scholar 

  17. Chaplin C et al (2009) Light-adapted electroretinograms in optic nerve hypoplasia. Doc Ophthalmol 119(2):123–132

    Article  PubMed  Google Scholar 

  18. Dawson WW, Trick GL, Litzkow CA (1979) Improved electrode for electroretinography. Invest Ophthalmol Vis Sci 18(9):988–991

    CAS  PubMed  Google Scholar 

  19. McCulloch DL, Van Boemel GB, Borchert MS (1997) Comparisons of contact lens, foil, fiber and skin electrodes for patterns electroretinograms. Doc Ophthalmol 94(4):327–340

    Article  PubMed  Google Scholar 

  20. Bach M et al (2013) ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol 126(1):1–7

    Article  PubMed  Google Scholar 

  21. Shoelson B (shoelson@helix.nih.gov). [cited 2013 04 March 2013]. http://clinengnhs.liv.ac.uk/ACF_Grubbs.htm

  22. Barnett V, Lewis T (1994) Outliers in statistical data. Wiley Series in probability and Mathematical Statistics. Wiley, Chichester

    Google Scholar 

  23. Carter GC, Knapp CH, Nuttall AH (1973) Estimation of magnitude-squared coherence function via overlapped fast Fourier-transform processing. IEEE Trans Audio Electroacoust 21(4):337–344

    Article  Google Scholar 

  24. Dobie RA, Wilson MJ (1989) Analysis of auditory evoked-potentials by magnitude-squared coherence. Ear Hear 10(1):2–13

    Article  CAS  PubMed  Google Scholar 

  25. Oppenheim AVS, Schafer RW (1975) Digital signal processing. Prentice-Hall International, Hemel Hempstead

    Google Scholar 

  26. Koopmans LH (1974) The spectral analysis of time series. Academic Press, San Diego

    Google Scholar 

  27. Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  28. Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 41(9):2797–2810

    CAS  PubMed  Google Scholar 

  29. Bland JM, Altman DG (2010) Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud 47(8):931–936

    Article  Google Scholar 

  30. Bach M (2001) Electrophysiological approaches for early detection of glaucoma. Eur J Ophthalmol 11:S41–S49

    PubMed  Google Scholar 

  31. Bach M, Gerling J, Geiger K (1992) Optic atrophy reduces the pattern-electroretinogram for both fine and coarse stimulus patterns. Clin Vis Sci 7(4):327–333

    Google Scholar 

  32. Mashima Y, Oguchi Y (1985) Clinical-study of the pattern electroretinogram in patients with optic-nerve damage. Doc Ophthalmol 61(1):91–96

    Article  CAS  PubMed  Google Scholar 

  33. Thompson DA, Drasdo N (1994) The origins of luminance and pattern responses of the pattern electroretinogram. Int J Psychophysiol 16(2–3):219–227

    Article  CAS  PubMed  Google Scholar 

  34. Ver Hoeve JN et al (1999) VEP and PERG acuity in anesthetized young adult rhesus monkeys. Vis Neurosci 16(4):607–617

    CAS  PubMed  Google Scholar 

  35. Bach M, Hoffmann MB (2008) Update on the pattern electroretinogram in glaucoma. Optom Vis Sci 85(6):386–395

    Article  PubMed  Google Scholar 

  36. Meigen T, Bach M (1999) On the statistical significance of electrophysiological steady-state responses. Doc Ophthalmol 98(3):207–232

    Article  CAS  PubMed  Google Scholar 

  37. Preiser D et al (2013) Photopic negative response versus pattern electroretinogram in early glaucoma. Invest Ophthalmol Vis Sci 54(2):1182–1191

    Article  PubMed  Google Scholar 

  38. Miyata K et al (2007) Reduction of oscillatory potentials and photopic negative response in patients with autosomal dominant optic atrophy with OPA1 mutations. Invest Ophthalmol Vis Sci 48(2):820–824

    Article  PubMed  Google Scholar 

  39. Gotoh Y, Machida S, Tazawa Y (2004) Selective loss of the photopic negative response in patients with optic nerve atrophy. Arch Ophthalmol 122(3):341–346

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony C. Fisher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fisher, A.C., McCulloch, D.L., Borchert, M.S. et al. Comparison of human expert and computer-automated systems using magnitude-squared coherence (MSC) and bootstrap distribution statistics for the interpretation of pattern electroretinograms (PERGs) in infants with optic nerve hypoplasia (ONH). Doc Ophthalmol 131, 25–34 (2015). https://doi.org/10.1007/s10633-015-9493-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-015-9493-y

Keywords

Navigation