Skip to main content
Log in

Vigabatrin can enhance electroretinographic responses in pigmented and albino rats

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the effects of the antiepileptic medication vigabatrin (VGB) on the retina of pigmented rats.

Methods

Scotopic and photopic electroretinograms were recorded from dark- and light-adapted Long-Evans (pigmented) and Sprague Dawley (albino) rats administered, daily, 52–55 injections of 250 mg·kg−1·day−1 VGB or 25–26 injections of 500 mg·kg−1·day−1 VGB, or a corresponding number of sham injections. Sensitivity and saturated amplitude of the rod photoresponse (S, Rm P3) and postreceptor response (1/σ, Vm) were derived, as were sensitivity and amplitude of the cone-mediated postreceptor response (1/σ cone, Vm cone). The oscillatory potentials and responses to a series of flickering lights (6.25, 12.5, 25 and 50 Hz) were studied in the time and frequency domains. A subset of rats’ eyes was harvested for Western blotting or histology.

Results

Of the parameters derived from dark-adapted ERG responses, in both pigmented and albino rats, VGB repeatedly and reliably enhanced electroretinographic parameters; no significant ERG deficits were noted. No significant alterations were observed in ER/oxidative stress or in the Akt cell death/survival pathway. There were migrations of photoreceptor nuclei toward the RPE and outgrowths of bipolar cell dendrites into the outer nuclear layer in VGB-treated rats; these were never observed in sham-treated animals.

Conclusions

Although VGB is associated with retinal dysfunction in patients and VGB toxicity has been demonstrated by other laboratories in the albino rat, in our pigmented and albino rats, VGB did not induce deficits in, but rather enhanced, retinal function. Nonetheless, retinal neuronal dysplasia was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rogawski MA, Loscher W (2004) The neurobiology of antiepileptic drugs. Nat Rev Neurosci 5:553–564

    Article  CAS  PubMed  Google Scholar 

  2. Maguire MJ, Hemming K, Wild JM, Hutton JL, Marson AG (2010) Prevalence of visual field loss following exposure to vigabatrin therapy: a systematic review. Epilepsia 51:2423–2431

    Article  PubMed  Google Scholar 

  3. Harding GF, Robertson K, Spencer EL, Holliday I (2002) Vigabatrin; its effect on the electrophysiology of vision. Doc Ophthalmol 104:213–229

    Article  CAS  PubMed  Google Scholar 

  4. Buncic JR, Westall CA, Panton CM, Munn JR, MacKeen LD, Logan WJ (2004) Characteristic retinal atrophy with secondary “inverse” optic atrophy identifies vigabatrin toxicity in children. Ophthalmology 111:1935–1942

    Article  PubMed  Google Scholar 

  5. Westall CA, Wright T, Cortese F, Kumarappah A, Snead OC 3rd, Buncic JR (2014) Vigabatrin retinal toxicity in children with infantile spasms: an observational cohort study. Neurology 83:2262–2268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Westall CA, Logan WJ, Smith K, Buncic JR, Panton CM, Abdolell M (2002) The Hospital for Sick Children, Toronto, Longitudinal ERG study of children on vigabatrin. Doc Ophthalmol 104:133–149

    Article  PubMed Central  PubMed  Google Scholar 

  7. Moskowitz A, Hansen RM, Eklund SE, Fulton AB (2012) Electroretinographic (ERG) responses in pediatric patients using vigabatrin. Doc Ophthalmol 124:197–209

    Article  PubMed  Google Scholar 

  8. Morong S, Westall CA, Nobile R, Buncic JR, Logan WJ, Panton CM, Abdolell M (2003) Longitudinal changes in photopic OPs occurring with vigabatrin treatment. Doc Ophthalmol 107:289–297

    Article  PubMed Central  PubMed  Google Scholar 

  9. McCoy B, Wright T, Weiss S, Go C, Westall CA (2011) Electroretinogram changes in a pediatric population with epilepsy: is vigabatrin acting alone? J Child Neurol 26:729–733

    Article  PubMed  Google Scholar 

  10. Dragas R, Westall C, Wright T (2014) Changes in the ERG d-wave with vigabatrin treatment in a pediatric cohort. Doc Ophthalmol 129:97–104

    Article  PubMed  Google Scholar 

  11. Sergott RC, Wheless JW, Smith MC, Westall CA, Kardon RH, Arnold A, Foroozan R, Sagar SM (2010) Evidence-based review of recommendations for visual function testing in patients treated with vigabatrin. Neuro-Ophthalmology 34:20–35

    Article  Google Scholar 

  12. Sieving PA (1993) Photopic ON- and OFF-pathway abnormalities in retinal dystrophies. Trans Am Ophthalmol Soc 91:701–773

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Ueno S, Kondo M, Niwa Y, Terasaki H, Miyake Y (2004) Luminance dependence of neural components that underlies the primate photopic electroretinogram. Invest Ophthalmol Vis Sci 45:1033–1040

    Article  PubMed  Google Scholar 

  14. Duboc A, Hanoteau N, Simonutti M, Rudolf G, Nehlig A, Sahel JA, Picaud S (2004) Vigabatrin, the GABA-transaminase inhibitor, damages cone photoreceptors in rats. Ann Neurol 55:695–705

    Article  CAS  PubMed  Google Scholar 

  15. Wang QP, Jammoul F, Duboc A, Gong J, Simonutti M, Dubus E, Craft CM, Ye W, Sahel JA, Picaud S (2008) Treatment of epilepsy: the GABA-transaminase inhibitor, vigabatrin, induces neuronal plasticity in the mouse retina. Eur J Neurosci 27:2177–2187

    Article  PubMed Central  PubMed  Google Scholar 

  16. Jammoul F, Wang Q, Nabbout R, Coriat C, Duboc A, Simonutti M, Dubus E, Craft CM, Ye W, Collins SD, Dulac O, Chiron C, Sahel JA, Picaud S (2009) Taurine deficiency is a cause of vigabatrin-induced retinal phototoxicity. Ann Neurol 65:98–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Jammoul F, Degardin J, Pain D, Gondouin P, Simonutti M, Dubus E, Caplette R, Fouquet S, Craft CM, Sahel JA, Picaud S (2010) Taurine deficiency damages photoreceptors and retinal ganglion cells in vigabatrin-treated neonatal rats. Mol Cell Neurosci 43:414–421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gaucher D, Arnault E, Husson Z, Froger N, Dubus E, Gondouin P, Dherbecourt D, Degardin J, Simonutti M, Fouquet S, Benahmed MA, Elbayed K, Namer IJ, Massin P, Sahel JA, Picaud S (2012) Taurine deficiency damages retinal neurones: cone photoreceptors and retinal ganglion cells. Amino Acids 43:1979–1993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ponjavic V, Granse L, Kjellstrom S, Andreasson S, Bruun A (2004) Alterations in electroretinograms and retinal morphology in rabbits treated with vigabatrin. Doc Ophthalmol 108:125–133

    Article  PubMed  Google Scholar 

  20. Kjellstrom U, Kjellstrom S, Bruun A, Andreasson S, Ponjavic V (2006) Retinal function in rabbits does not improve 4-5 months after terminating treatment with vigabatrin. Doc Ophthalmol 112:35–41

    Article  PubMed  Google Scholar 

  21. Kjellstrom U, Bruun A, Ghosh F, Andreasson S, Ponjavic V (2009) Dose-related changes in retinal function and PKC-alpha expression in rabbits on vigabatrin medication. Effect of vigabatrin in the rabbit eye. Graefe’s Arch Clin Exp Ophthalmol = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 247:1057–1067

    Article  Google Scholar 

  22. Izumi Y, Ishikawa M, Benz AM, Izumi M, Zorumski CF, Thio LL (2004) Acute vigabatrin retinotoxicity in albino rats depends on light but not GABA. Epilepsia 45:1043–1048

    Article  CAS  PubMed  Google Scholar 

  23. Heim MK, Gidal BE (2012) Vigabatrin-associated retinal damage: potential biochemical mechanisms. Acta Neurol Scand 126:219–228

    Article  CAS  PubMed  Google Scholar 

  24. Akula JD, Hansen RM, Tzekov R, Favazza TL, Vyhovsky TC, Benador IY, Mocko JA, McGee D, Kubota R, Fulton AB (2010) Visual cycle modulation in neurovascular retinopathy. Exp Eye Res 91:153–161

    Article  CAS  PubMed  Google Scholar 

  25. Akula JD, Mocko JA, Benador IY, Hansen RM, Favazza TL, Vyhovsky TC, Fulton AB (2008) The neurovascular relation in oxygen-induced retinopathy. Mol Vis 14:2499–2508

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Akula JD, Lyubarsky AL, Naarendorp F (2003) The sensitivity and spectral identity of the cones driving the b-wave of the rat electroretinogram. Vis Neurosci 20:109–117

    Article  PubMed  Google Scholar 

  27. Hood DC, Birch DG (1994) Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave. Invest Ophthalmol Vis Sci 35:2948–2961

    CAS  PubMed  Google Scholar 

  28. Lamb TD, Pugh EN Jr (1992) A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J Physiol 449:719–758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Naka KI, Rushton WA (1966) S-potentials from colour units in the retina of fish (Cyprinidae). J Physiol 185:536–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Wurziger K, Lichtenberger T, Hanitzsch R (2001) On-bipolar cells and depolarising third-order neurons as the origin of the ERG-b-wave in the RCS rat. Vis Res 41:1091–1101

    Article  CAS  PubMed  Google Scholar 

  31. Robson JG, Frishman LJ (1995) Response linearity and kinetics of the cat retina: the bipolar cell component of the dark-adapted electroretinogram. Vis Neurosci 12:837–850

    Article  CAS  PubMed  Google Scholar 

  32. Liu K, Akula JD, Hansen RM, Moskowitz A, Kleinman MS, Fulton AB (2006) Development of the electroretinographic oscillatory potentials in normal and ROP rats. Invest Ophthalmol Vis Sci 47:5447–5452

    Article  PubMed  Google Scholar 

  33. Bui BV, Armitage JA, Vingrys AJ (2002) Extraction and modelling of oscillatory potentials. Doc Ophthalmol 104:17–36

    Article  PubMed  Google Scholar 

  34. Akula JD, Mocko JA, Moskowitz A, Hansen RM, Fulton AB (2007) The oscillatory potentials of the dark-adapted electroretinogram in retinopathy of prematurity. Invest Ophthalmol Vis Sci 48:5788–5797

    Article  PubMed Central  PubMed  Google Scholar 

  35. Wachtmeister L (2001) Some aspects of the oscillatory response of the retina. Prog Brain Res 131:465–474

    Article  CAS  PubMed  Google Scholar 

  36. Dong CJ, Agey P, Hare WA (2004) Origins of the electroretinogram oscillatory potentials in the rabbit retina. Vis Neurosci 21:533–543

    Article  PubMed  Google Scholar 

  37. Alexander KR, Raghuram A (2007) Effect of contrast on the frequency response of synchronous period doubling. Vis Res 47:555–563

    Article  PubMed Central  PubMed  Google Scholar 

  38. Meikle L, Talos DM, Onda H, Pollizzi K, Rotenberg A, Sahin M, Jensen FE, Kwiatkowski DJ (2007) A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci 27:5546–5558

    Article  CAS  PubMed  Google Scholar 

  39. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  CAS  PubMed  Google Scholar 

  40. Takahashi T, Morita K, Akagi R, Sassa S (2004) Heme oxygenase-1: a novel therapeutic target in oxidative tissue injuries. Curr Med Chem 11:1545–1561

    Article  CAS  PubMed  Google Scholar 

  41. Di Nardo A, Kramvis I, Cho N, Sadowski A, Meikle L, Kwiatkowski DJ, Sahin M (2009) Tuberous sclerosis complex activity is required to control neuronal stress responses in an mTOR-dependent manner. J Neurosci 29:5926–5937

    Article  PubMed Central  PubMed  Google Scholar 

  42. Hood DC, Birch DG (2006) Measuring the health of the human photoreceptors with the leading edge of the a-wave. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision, 2nd edn. MIT Press, Cambridge, Mass, pp 487–501

    Google Scholar 

  43. Robson JG, Frishman LJ (2014) The rod-driven a-wave of the dark-adapted mammalian electroretinogram. Prog Retin Eye Res 39:1–22

    Article  PubMed  Google Scholar 

  44. Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3:728–739

    Article  CAS  PubMed  Google Scholar 

  45. Rasmussen AD, Truchot N, Pickersgill N, Thale ZI, Rosolen SG, Botteron C (2015) The effects of taurine on Vigabatrin, high light intensity and mydriasis induced retinal toxicity in the pigmented rat. Exp Toxicol Pathol 67:13–20

    Article  CAS  PubMed  Google Scholar 

  46. McCoy B, Wright T, Weiss S, Go C, Westall CA (2011) Electroretinogram changes in a pediatric population with epilepsy: is vigabatrin acting alone? J Child Neurol 26:729–733

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work supported by a grant from Lundbeck LLC. We thank Prof. Serge Picaud for his suggestions regarding the importance of animal chow on the outcome of VGB treatment in murine animals and for providing details of his animals’ diet for comparison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne B. Fulton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akula, J.D., Noonan, E.R., Di Nardo, A. et al. Vigabatrin can enhance electroretinographic responses in pigmented and albino rats. Doc Ophthalmol 131, 1–11 (2015). https://doi.org/10.1007/s10633-015-9491-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-015-9491-0

Keywords

Navigation