Skip to main content
Log in

Faces are more attractive than motion: evidence from two simultaneous oddball paradigms

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Objective

The P300 event-related potential reflects high-level cognitive processing; it is also sensitive to attentional modulation, impeding its use in malingering detection. Can this be overcome by particularly salient stimuli, e.g., motion or faces?

Methods

In 11 subjects, we ran two concurrent, uncorrelated oddball sequences (“main sequence” and “distractor sequence”). We modulated the subjects’ attention via three types of tasks: (1) count main oddballs, (2) passive viewing, and (3) count distractor oddballs. For the main sequence, the frequent stimulus was homogeneously gray, and oddballs were (a) stationary gratings, (b) moving gratings, or (c) faces. For the distractor sequence, the frequent stimulus was a black fixation target, with a white fixation target as oddball.

Results

P300 amplitudes were larger for faces than for stationary and moving gratings. Median P300 amplitudes were largest when attending; the P300 was substantially reduced in the “passive” condition (down to 30 % for gratings and down to 80 % for faces) and somewhat more for the “distraction” condition (down to 40 % for gratings and down to 55 % for faces). With distraction, significant P300s occurred in 9 of 11 subjects for faces, only in 5 or 4 with stationary or moving gratings, respectively.

Conclusions

Face-evoked P300s were more resistant to distraction than those to stationary or moving gratings. This provides support for the socio-cognitive role of faces being associated with privileged processing mechanisms. Attentional modulation of P300 depends on stimulus category. Face stimuli may help to objectively access higher level processing while minimizing willful influences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Howard JE, Dorfman LJ (1986) Evoked potentials in hysteria and malingering. J Clin Neurophysiol 3:39–49

    Article  CAS  PubMed  Google Scholar 

  2. Villegas RB, Ilsen PF (2007) Functional vision loss: a diagnosis of exclusion. Optometry 78:523–533

    Article  PubMed  Google Scholar 

  3. Towle VL, Harter MR (1977) Objective determination of human visual acuity: pattern evoked potentials. Invest Ophthalmol Vis Sci 16:1073–1076

    CAS  PubMed  Google Scholar 

  4. Teping C (1981) Determination of visual acuity by the visually evoked cortical potential (author’s transl). Klin Monbl Augenheilkd 179:169–172

    Article  CAS  PubMed  Google Scholar 

  5. Odom JV, Hoyt CS, Marg E (1981) Effect of natural deprivation and unilateral eye patching on visual acuity of infants and children: evoked potential measurements. Arch Ophthalmol 99:1412–1416

    Article  CAS  PubMed  Google Scholar 

  6. Röver J, Bach M (1987) Pattern electroretinogram plus visual evoked potential: a decisive test in patients suspected of malingering. Doc Ophthalmol 66:245–251

    Article  PubMed  Google Scholar 

  7. Nakamura A, Akio T, Matsuda E, Wakami Y (2001) Pattern visual evoked potentials in malingering. J Neuroophthalmol 21:42–45

    Article  CAS  PubMed  Google Scholar 

  8. McBain VA, Robson AG, Hogg CR, Holder GE (2007) Assessment of patients with suspected non-organic visual loss using pattern appearance visual evoked potentials. Graefes Arch Clin Exp Ophthalmol 245:502–510

    Article  PubMed  Google Scholar 

  9. Bach M, Maurer JP, Wolf ME (2008) Visual evoked potential-based acuity assessment in normal vision, artificially degraded vision, and in patients. Br J Ophthalmol 92:396–403

    Article  CAS  PubMed  Google Scholar 

  10. Mackay AM, Bradnam MS, Hamilton R, Elliot AT, Dutton GN (2008) Real-time rapid acuity assessment using VEPs: development and validation of the step VEP technique. Invest Ophthalmol Vis Sci 49:438–441

    Article  PubMed  Google Scholar 

  11. Almoqbel F, Leat SJ, Irving E (2008) The technique, validity and clinical use of the sweep VEP. Ophthalmic Physiol Opt 28:393–403

    Article  PubMed  Google Scholar 

  12. Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA (2002) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15:95–111

    Article  PubMed  Google Scholar 

  13. Jiraskova N, Kuba M, Kremlacek J, Rozsival P (2011) Normal sensory and absent cognitive electrophysiological responses in functional visual loss following chemical eye burn. Doc Ophthalmol 123:51–57

    Article  PubMed  Google Scholar 

  14. Sutton S, Braren M, Zubin J, John ER (1965) Evoked-potential correlates of stimulus uncertainty. Science 150:1187–1188

    Article  CAS  PubMed  Google Scholar 

  15. Linden DEJ (2005) The p300: where in the brain is it produced and what does it tell us? Neuroscientist 11:563–576

    Article  CAS  PubMed  Google Scholar 

  16. Katayama J, Polich J (1999) Auditory and visual P300 topography from a 3 stimulus paradigm. Clin Neurophysiol 110:463–468

    Article  CAS  PubMed  Google Scholar 

  17. Picton TW (1992) The P300 wave of the human event-related potential. J Clin Neurophysiol 9:456–479

    Article  CAS  PubMed  Google Scholar 

  18. Gratton G, Bosco CM, Kramer AF, Coles MG, Wickens CD, Donchin E (1990) Event-related brain potentials as indices of information extraction and response priming. Electroencephalogr Clin Neurophysiol 75:419–432

    Article  CAS  PubMed  Google Scholar 

  19. Sangal B, Sangal JM (1996) Topography of auditory and visual P300 in normal adults. Clin Electroencephalogr 27:145–150

    CAS  PubMed  Google Scholar 

  20. Duncan-Johnson CC, Donchin E (1977) On quantifying surprise: the variation of event-related potentials with subjective probability. Psychophysiology 14:456–467

    Article  CAS  PubMed  Google Scholar 

  21. Fein G, Turetsky B (1989) P300 latency variability in normal elderly: effects of paradigm and measurement technique. Electroencephalogr Clin Neurophysiol 72:384–394

    Article  CAS  PubMed  Google Scholar 

  22. Ramachandran G, Porjesz B, Begleiter H, Litke A (1996) A simple auditory oddball task in young adult males at high risk for alcoholism. Alcohol Clin Exp Res 20:9–15

    Article  CAS  PubMed  Google Scholar 

  23. Barrett G, Neshige R, Shibasaki H (1987) Human auditory and somatosensory event-related potentials: effects of response condition and age. Electroencephalogr Clin Neurophysiol 66:409–419

    Article  CAS  PubMed  Google Scholar 

  24. Soltani M, Knight RT (2000) Neural origins of the P300. Crit Rev Neurobiol 14:199–224

    Article  CAS  PubMed  Google Scholar 

  25. Polich J (2003) Theoretical overview of P3a and P3b. In: Polich J (ed) Detection of change. Springer, US, pp 83–98

    Chapter  Google Scholar 

  26. Polich J (2004) Neuropsychology of P3a and P3b: a theoretical overview. Brainwaves and mind: recent developments. Wheaton, Kjellberg, pp 15–29

  27. Rosenfeld JP, Biroschak JR, Kleschen MJ, Smith KM (2005) Subjective and objective probability effects on P300 amplitude revisited. Psychophysiology 42:356–359

    Article  PubMed  Google Scholar 

  28. Hansenne M (2000) Le potentiel évoqué cognitif P300 (I): aspects théorique et psychobiologique. Neurophysiol Clin 30:191–210

    Article  CAS  PubMed  Google Scholar 

  29. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148

    Article  PubMed Central  PubMed  Google Scholar 

  30. Towle VL, Sutcliffe E, Sokol S (1985) Diagnosing functional visual deficits with the P300 component of the visual evoked potential. Arch Ophthalmol 103:47–50

    Article  CAS  PubMed  Google Scholar 

  31. Lorenz J, Kunze K, Bromm B (1998) Differentiation of conversive sensory loss and malingering by P300 in a modified oddball task. NeuroReport 9:187–191

    Article  CAS  PubMed  Google Scholar 

  32. Heinrich SP, Marhöfer D, Bach M (2010) “Cognitive” visual acuity estimation based on the event-related potential P300 component. Clin Neurophysiol 121:1464–1472

    Article  PubMed  Google Scholar 

  33. Becker DE, Shapiro D (1980) Directing attention toward stimuli affects the P300 but not the orienting response. Psychophysiology 17:385–389

    Article  CAS  PubMed  Google Scholar 

  34. Heinze HJ, Luck SJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. I. Evidence for early selection. Electroencephalogr Clin Neurophysiol 75:511–527

    Article  CAS  PubMed  Google Scholar 

  35. Polich J, Kok A (1995) Cognitive and biological determinants of P300: an integrative review. Biol Psychol 41:103–146

    Article  CAS  PubMed  Google Scholar 

  36. Polich J, Corey-Bloom J (2005) Alzheimer’s disease and P300: review and evaluation of task and modality. Curr Alzheimer Res 2:515–525

    Article  CAS  PubMed  Google Scholar 

  37. Saevarsson S, Kristjánsson Á, Bach M, Heinrich SP (2012) P300 in neglect. Clin Neurophysiol 123:496–506

    Article  PubMed  Google Scholar 

  38. Rosenfeld JP, Soskins M, Bosh G, Ryan A (2004) Simple, effective countermeasures to P300-based tests of detection of concealed information. Psychophysiology 41:205–219

    Article  PubMed  Google Scholar 

  39. Bargh JA (1982) Attention and automaticity in the processing of self-relevant information. J Pers Soc Psychol 43:425–436

    Article  Google Scholar 

  40. Abrams RA, Christ SE (2003) Motion onset captures attention. Psychol Sci 14:427–432

    Article  PubMed  Google Scholar 

  41. Dehaene S, Changeux J-P (2011) Experimental and theoretical approaches to conscious processing. Neuron 70:200–227

    Article  CAS  PubMed  Google Scholar 

  42. Livingstone M, Hubel D (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240:740–749

    Article  CAS  PubMed  Google Scholar 

  43. Changizi MA, Zhang Q, Shimojo S (2006) Bare skin, blood and the evolution of primate colour vision. Biol Lett 2:217–221

    Article  PubMed Central  PubMed  Google Scholar 

  44. Sergent J, Ohta S, MacDonald B (1992) Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain 115(Pt 1):15–36

    Article  PubMed  Google Scholar 

  45. Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311

    CAS  PubMed  Google Scholar 

  46. Meijer EH, Smulders FTY, Merckelbach HLGJ, Wolf AG (2007) The P300 is sensitive to concealed face recognition. Int J Psychophysiol 66:231–237

    Article  PubMed  Google Scholar 

  47. World Medical Association (2000) Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Med Assoc 284:3043–3045

    Article  Google Scholar 

  48. Bex PJ, Makous W (2002) Spatial frequency, phase, and the contrast of natural images. J Opt Soc Am A Opt Image Sci Vis 19:1096–1106

    Article  PubMed  Google Scholar 

  49. Heinrich SP, Bach M (2008) Signal and noise in P300 recordings to visual stimuli. Doc Ophthalmol 117:73–83

    Article  PubMed  Google Scholar 

  50. Chertoff ME, Goldstein R, Mease MR (1988) Early event-related potentials with passive subject participation. J Speech Hear Res 31:460–465

    CAS  PubMed  Google Scholar 

  51. Katayama J, Polich J (1996) P300, probability, and the three-tone paradigm. Electroencephalogr Clin Neurophysiol 100:555–562

    Article  CAS  PubMed  Google Scholar 

  52. American Clinical Neurophysiology Society (2006) Guideline 5: guidelines for standard electrode position nomenclature. J Clin Neurophysiol 23:107–110

    Article  Google Scholar 

  53. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26

    Article  Google Scholar 

  54. Jeffreys DA, Axford JG (1972) Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Exp Brain Res 16:1–21

    CAS  PubMed  Google Scholar 

  55. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, Vaegan (2010) ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 120:111–119

    Article  PubMed  Google Scholar 

  56. Jeffreys DA (1989) A face-responsive potential recorded from the human scalp. Exp Brain Res 78:193–202

    Article  CAS  PubMed  Google Scholar 

  57. Bötzel K, Grüsser O-J (1989) Electric brain potentials evoked by pictures of faces and non-faces: a search for “face-specific” EEG-potentials. Exp Brain Res 77:349–360

    Article  PubMed  Google Scholar 

  58. Joyce C, Rossion B (2005) The face-sensitive N170 and VPP components manifest the same brain processes: the effect of reference electrode site. Clin Neurophysiol 116:2613–2631

    Article  PubMed  Google Scholar 

  59. Eimer M (2011) The face-sensitivity of the N170 component. Front Hum Neurosci. doi:10.3389/fnhum.2011.00119

    PubMed Central  PubMed  Google Scholar 

  60. Tacikowski P, Nowicka A (2010) Allocation of attention to self-name and self-face: an ERP study. Biol Psychol 84:318–324

    Article  PubMed  Google Scholar 

  61. Cherry EC (1953) Some experiments on the recognition of speech, with one and with two ears. J Acoust Soc Am 25:975–979

    Article  Google Scholar 

  62. Moray N (1959) Attention in dichotic listening: affective cues and the influence of instructions. Q J Exp Psychol 11:56–60

    Article  Google Scholar 

  63. Wolford G, Morrison F (1980) Processing of unattended visual information. Mem Cognit 8:521–527

    Article  CAS  PubMed  Google Scholar 

  64. Wood N, Cowan N (1995) The cocktail party phenomenon revisited: how frequent are attention shifts to one’s name in an irrelevant auditory channel? J Exp Psychol Learn Mem Cogn 21:255–260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Deutsche Forschungsgemeinschaft (BA 877/18 and BA 877/21). We are grateful to our subjects for their participation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Marhöfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marhöfer, D.J., Bach, M. & Heinrich, S.P. Faces are more attractive than motion: evidence from two simultaneous oddball paradigms. Doc Ophthalmol 128, 201–209 (2014). https://doi.org/10.1007/s10633-014-9434-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-014-9434-1

Keywords

Navigation