Documenta Ophthalmologica

, Volume 128, Issue 2, pp 121–129 | Cite as

Difficulties of motion-onset VEP interpretation in school-age children

  • Zuzana Kubova
  • Miroslav Kuba
  • Jan Kremlacek
  • Jana Langrova
  • Jana Szanyi
  • Frantisek Vit
  • Marie Chutna
Original Research Article

Abstract

Background

In adults, motion-onset visual evoked potentials (M-VEPs) with a dominant N2 peak represent a useful diagnostic tool. However, it is difficult to use this type of VEP in children because of the long maturation (up to 18 years) of M-VEPs, which is characterised by a gradual decrease in N2 peak latency and shape development. Moreover, in some children, M-VEPs are difficult to identify with standard stimuli.

Methods

We tested features of M-VEPs in 30 children (7–12 years) with the following set of standard stimuli used in our lab for examining adults (https://web.lfhk.cuni.cz/elf): low-contrast translation motion (TM) and expansion/contraction motion (ExCoM) in full field and in periphery (with central 20° masked). In 16 children, a high-contrast TM was also tested.

Results

With standard (low-contrast) stimuli, a common M-VEP to TM and to ExCoM was detected in 77 and 83 % of children, respectively. The M-VEPs to ExCoM in the periphery were detected in only 43 % of children. An abnormal dominant P1 peak was found in 9 % of VEPs to TM, 12 % of VEPs to full-field ExCoM and 14 % of VEPs to peripheral ExCoM. The M-VEPs to all low-contrast stimuli displayed large inter-individual latency variability (N2 peak latency differed for more than 100 ms). High contrast (more suitable for the non-mature magnocellular pathway) shortened M-VEP latencies and improved amplitudes.

Conclusions

Our findings show that the maturation of motion perception in children is inter-individually variable, which limits the diagnostic use of M-VEPs.

Keywords

Motion-onset visual evoked potentials VEPs M-VEPs Children 

References

  1. 1.
    Kubova Z, Kuba M (1992) Clinical application of motion-onset visual evoked potentials. Doc Ophthalmol 81(2):209–218PubMedCrossRefGoogle Scholar
  2. 2.
    Kubova Z, Kuba M, Hrochova J, Sverak J (1996) Motion-onset visual evoked potentials improve the diagnosis of glaucoma. Doc Ophthalmol 92(3):211–221PubMedCrossRefGoogle Scholar
  3. 3.
    Korth M, Kohl S, Martus P, Sembritzki T (2000) Motion-evoked pattern visual evoked potentials in glaucoma. J Glaucoma 9(5):376–387PubMedCrossRefGoogle Scholar
  4. 4.
    Kubova Z, Szanyi J, Langrova J, Kremlacek J, Kuba M, Honegr K (2006) Motion-onset and pattern-reversal visual evoked potentials in diagnostics of neuroborreliosis. J Clin Neurophysiol 23(5):416–420PubMedCrossRefGoogle Scholar
  5. 5.
    Szanyi J, Kubova Z, Kremlacek J, Langrova J, Vit F, Kuba M, Szanyi J, Plisek S (2012) Pattern and motion-related visual-evoked potentials in neuroborreliosis: follow-up study. J Clin Neurophysiol 29(2):174–180PubMedCrossRefGoogle Scholar
  6. 6.
    Kuba M, Kubova Z, Kremlacek J, Langrova J (2007) Motion-onset VEPs: characteristics, methods, and diagnostic use. Vis Res 47(2):189–202PubMedCrossRefGoogle Scholar
  7. 7.
    Kubova Z, Kuba M, Juran J, Blakemore C (1996) Is the motion system relatively spared in amblyopia? Evidence from cortical evoked responses. Vis Res 36(1):181–190PubMedCrossRefGoogle Scholar
  8. 8.
    Kubova Z, Kuba M, Peregrin J, Novakova V (1996) Visual evoked potential evidence for magnocellular system deficit in dyslexia. Physiol Res 45(1):87–89PubMedGoogle Scholar
  9. 9.
    Kuba M, Szanyi J, Gayer D, Kremlacek J, Kubova Z (2001) Electrophysiological testing of dyslexia. Acta Medica (Hradec Kralove) 44(4):131–134Google Scholar
  10. 10.
    Jednorog K, Marchewka A, Tacikowski P, Heim S, Grabowska A (2011) Electrophysiological evidence for the magnocellular-dorsal pathway deficit in dyslexia. Dev Sci 14(4):873–880PubMedCrossRefGoogle Scholar
  11. 11.
    Kuba M, Kubova Z (1992) Visual evoked potentials specific for motion onset. Doc Ophthalmol 80(1):83–89PubMedCrossRefGoogle Scholar
  12. 12.
    Langrova J, Kuba M, Kremlacek J, Kubova Z, Vit F (2006) Motion-onset VEPs reflect long maturation and early aging of visual motion-processing system. Vis Res 4(4):536–544CrossRefGoogle Scholar
  13. 13.
    Kremlacek J, Kuba M, Kubova Z, Chlubnova J (2004) Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Doc Ophthalmol 109(2):169–175PubMedCrossRefGoogle Scholar
  14. 14.
    Bach M, Ullrich D (1994) Motion adaptation governs the shape of motion-evoked cortical potentials. Vis Res 34(12):1541–1547PubMedCrossRefGoogle Scholar
  15. 15.
    Göpfert E, Schlykowa L, Müller R (1988) Zur topographie des bewegungs VEP in menschen. Zeitschrift EEG-EMG 19:14–20Google Scholar
  16. 16.
    Lefebvre L, Muckle G, Jacobson S, Jacobson J, Bastien C, Saint-Amour D (2009) Motion-onset visual evoked potentials (m-VEPs) in children: similarities and differences between translational and radial motion. J Vis 9:630CrossRefGoogle Scholar
  17. 17.
    Hollants-Gilhuijs MA, De Munck JC, Kubova Z, van Royen E, Spekreijse H (2000) The development of hemispheric asymmetry in human motion VEPs. Vis Res 40(1):1–11PubMedCrossRefGoogle Scholar
  18. 18.
    Kremlacek J, Kuba M, Kubova Z, Langrova J, Vit F, Szanyi J (2007) Within-session reproducibility of motion-onset VEPs: effect of adaptation/habituation or fatigue on N2 peak amplitude and latency. Doc Ophthalmol 115(2):95–103PubMedCrossRefGoogle Scholar
  19. 19.
    Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  20. 20.
    De Vries M, Van Dijk B, Spekreijse H (1989) Motion onset-offset VEPs in children. Electroencephalogr Clin Neurophysiol 74(2):81–87PubMedCrossRefGoogle Scholar
  21. 21.
    Heinrich SP (2007) A primer on motion visual evoked potentials. Doc Ophthalmol 114(2):83–105PubMedCrossRefGoogle Scholar
  22. 22.
    Hoffmann M, Dorn TJ, Bach M (1999) Time course of motion adaptation: motion-onset visual evoked potentials and subjective estimates. Vis Res 39(3):437–444PubMedCrossRefGoogle Scholar
  23. 23.
    Hoffmann MB, Bach M (2002) The distinction between eye and object motion is reflected by the motion-onset visual evoked potential. Exp Brain Res 144(2):141–151PubMedCrossRefGoogle Scholar
  24. 24.
    Maurer JP, Bach M (2003) Isolating motion responses in visual evoked potentials by preadapting flicker-sensitive mechanisms. Exp Brain Res 151(4):536–541PubMedCrossRefGoogle Scholar
  25. 25.
    Dion LA, Muckle G, Bastien C, Jacobson SW, Jacobson JL, Saint-Amour D (2013) Sex differences in visual evoked potentials in school-age children: what is the evidence beyond the checkerboard? Int J Psychophysiol 88(2):136–142PubMedCrossRefGoogle Scholar
  26. 26.
    Kuba M, Kremlacek J, Langrova J, Kubova Z, Szanyi J, Vit F (2012) Aging effect in pattern, motion and cognitive visual evoked potentials. Vis Res 62:9–16PubMedCrossRefGoogle Scholar
  27. 27.
    Jacques C, Levy E, Muckle G, Jacobson SW, Bastien C, Dewailly E, Ayotte P, Jacobson JL, Saint-Amour D (2011) Long-term effects of prenatal omega-3 fatty acid intake on visual function in school-age children. J Pediatr 158(1):83–90PubMedCrossRefGoogle Scholar
  28. 28.
    Kubova Z, Kuba M, Spekreijse H, Blakemore C (1995) Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vis Res 35(2):197–205PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zuzana Kubova
    • 1
  • Miroslav Kuba
    • 1
  • Jan Kremlacek
    • 1
  • Jana Langrova
    • 1
  • Jana Szanyi
    • 1
  • Frantisek Vit
    • 1
  • Marie Chutna
    • 1
  1. 1.Department of Pathophysiology, Faculty of Medicine in Hradec KraloveCharles University in PragueHradec KraloveCzech Republic

Personalised recommendations