Documenta Ophthalmologica

, Volume 126, Issue 2, pp 125–136 | Cite as

Dichoptic multifocal visual evoked potentials identify local retinal dysfunction in age-related macular degeneration

  • Faran SabetiEmail author
  • Andrew C. James
  • Rohan W. Essex
  • Ted Maddess
Original Research Article



To evaluate the ability of multifocal visual evoked potentials (mfVEPs) to identify functional loss in patients with early and exudative age-related macular degeneration (AMD). A dichoptic multifocal stimulus presentation was employed to investigate the regional effects of AMD and the potential diagnostic utility in macular disease.


MfVEP responses were recorded from 19 unilateral exudative AMD patients with non-exudative (n = 15) or normal (n = 4) presentations in the fellow eye and 28 age-matched controls. Root mean square (RMS) waveforms were pooled across selected EEG channels to produce global field RMS (gfRMS) waveforms. GfRMS amplitudes and response delays were analysed by multivariate linear models, and diagnostic capacity was measured using areas under the curve (AUC) of receiver operator characteristic plots.


The mean gfRMS amplitude of the exudative eye of AMD patients was significantly reduced compared with the controls (−2.03 ± 0.08 dB, t = −12.9). Fellow non-exudative AMD eyes were less effected but still significantly reduced (−0.84 ± 0.07 dB, t = −11.5). No significant difference in mean gfRMS delay of AMD eyes across the central 46° was observed. AUC values of 100 ± 0.0 % (mean ± SE) for exudative and 79.7 ± 6.5 % for non-exudative eyes were obtained for response amplitudes.


The study demonstrated that mfVEP identified retinal dysfunction in both exudative AMD and fellow non-exudative AMD eyes, but mostly affecting the macular field. The reduced testing duration and good diagnostic accuracy suggest that dichoptic mfVEPs may be a sensitive tool for monitoring progression in AMD.


Multifocal Visual evoked potentials Age-related macular degeneration 



The authors thank Australian Research Council (ARC) through the ARC Centre of Excellence in Vision Science (CE0561903), AusIndustry and Seeing Machines Ltd, Canberra.


  1. 1.
    Regan D, Heron JR (1969) Clinical investigation of lesions of the visual pathway: a new objective technique. J Neurol Neurosurg Psychiatry 32(5):479–483PubMedCrossRefGoogle Scholar
  2. 2.
    Milner BA, Regan D, Heron JR (1974) Differential diagnosis of multiple sclerosis by visual evoked potential recording. Brain 97(4):755–772PubMedCrossRefGoogle Scholar
  3. 3.
    Cappin JM, Nissim S (1975) Visual evoked responses in the assessment of field defects in glaucoma. Arch Ophthalmol 93(1):9–18PubMedCrossRefGoogle Scholar
  4. 4.
    Baseler HA, Sutter EE, Klein SA, Carney T (1994) The topography of visual evoked response properties across the visual field. Electroencephalogr Clin Neurophysiol 90(1):65–81PubMedCrossRefGoogle Scholar
  5. 5.
    Ruseckaite R, Maddess T, Danta G, Lueck CJ, James AC (2005) Sparse multifocal stimuli for the detection of multiple sclerosis. Ann Neurol 57(6):904–913PubMedCrossRefGoogle Scholar
  6. 6.
    Hood DC, Zhang X, Greenstein VC, Kangovi S, Odel JG, Liebmann JM, Ritch R (2000) An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve. Invest Ophthalmol Vis Sci 41(6):1580–1587PubMedGoogle Scholar
  7. 7.
    Chen JY, Hood DC, Odel JG, Behrens MM (2006) The effects of retinal abnormalities on the multifocal visual evoked potential. Invest Ophthalmol Vis Sci 47(10):4378–4385PubMedCrossRefGoogle Scholar
  8. 8.
    Wolff BE, Bearse MA Jr, Schneck ME, Barez S, Adams AJ (2010) Multifocal VEP (mfVEP) reveals abnormal neuronal delays in diabetes. Doc Ophthalmol 121(3):189–196PubMedCrossRefGoogle Scholar
  9. 9.
    Lennerstrand G (1982) Delayed visual evoked cortical potentials in retinal disease. Acta Ophthalmol (Copenh) 60(4):497–504CrossRefGoogle Scholar
  10. 10.
    Marcus M, Merin S, Wolf M, Feinsod M (1983) Electrophysiologic tests in assessment of senile macular degeneration. Ann Ophthalmol 15(3):235–238PubMedGoogle Scholar
  11. 11.
    Folk JC, Thompson HS, Han DP, Brown CK (1984) Visual function abnormalities in central serous retinopathy. Arch Ophthalmol 102(9):1299–1302PubMedCrossRefGoogle Scholar
  12. 12.
    Bass SJ, Sherman J, Bodis-Wollner I, Nath S (1985) Visual evoked potentials in macular disease. Invest Ophthalmol Vis Sci 26(8):1071–1074PubMedGoogle Scholar
  13. 13.
    Sherman J, Bass SJ, Noble KG, Nath S, Sutija V (1986) Visual evoked potential (VEP) delays in central serous choroidopathy. Invest Ophthalmol Vis Sci 27(2):214–221PubMedGoogle Scholar
  14. 14.
    Johnson LN, Yee RD, Hepler RS, Martin DA (1987) Alteration of the visual evoked potential by macular holes: comparison with optic neuritis. Graefes Arch Clin Exp Ophthalmol 225(2):123–128PubMedCrossRefGoogle Scholar
  15. 15.
    Shimada Y, Adachi-Usami E, Murayama K (1997) How are macular changes reflected in pattern visually evoked cortical potentials? Acta Ophthalmol Scand 75(3):277–280PubMedCrossRefGoogle Scholar
  16. 16.
    Negishi C, Takasoh M, Fujimoto N, Tsuyama Y, Adachi-Usami E (2001) Visual evoked potentials in relation to visual acuity in macular disease. Acta Ophthalmol Scand 79(3):271–276PubMedCrossRefGoogle Scholar
  17. 17.
    Rosli Y, Xin-Lin G, James A, Maddess T (2008) Neural signal processing of mfVEP responses from AMD patients. In: Information technology. International symposium on, pp 1–6Google Scholar
  18. 18.
    James AC (2003) The pattern-pulse multifocal visual evoked potential. Invest Ophthalmol Vis Sci 44(2):879–890PubMedCrossRefGoogle Scholar
  19. 19.
    James AC, Ruseckaite R, Maddess T (2005) Effect of temporal sparseness and dichoptic presentation on multifocal visual evoked potentials. Vis Neurosci 22(1):45–54PubMedCrossRefGoogle Scholar
  20. 20.
    Maddess T, James AC, Bowman EA (2005) Contrast response of temporally sparse dichoptic multifocal visual evoked potentials. Vis Neurosci 22(2):153–162PubMedCrossRefGoogle Scholar
  21. 21.
    James AC, Maddess T, Goh XL, Winkles N (2005) Spatially sparse pattern-pulse stimulation enhances multifocal visual evoked potential analysis. Invest Ophthalmol Vis Sci 46(5):3602Google Scholar
  22. 22.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310PubMedCrossRefGoogle Scholar
  23. 23.
    Bell A, James AC, Kolic M, Essex RW, Maddess T (2010) Dichoptic multifocal pupillography reveals afferent visual field defects in early type 2 diabetes. Invest Ophthalmol Vis Sci 51(1):602–608PubMedCrossRefGoogle Scholar
  24. 24.
    Sabeti F, Maddess T, Essex RW, James AC (2011) Multifocal pupillographic assessment of age-related macular degeneration. Optom Vis Sci 88(12):1477–1485PubMedGoogle Scholar
  25. 25.
    Stensaas SS, Eddington DK, Dobelle WH (1974) The topography and variability of the primary visual cortex in man. J Neurosurg 40(6):747–755PubMedCrossRefGoogle Scholar
  26. 26.
    Rademacher J, Caviness VS Jr, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3(4):313–329PubMedCrossRefGoogle Scholar
  27. 27.
    Curcio CA, Medeiros NE, Millican CL (1996) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci 37(7):1236–1249PubMedGoogle Scholar
  28. 28.
    Sokol S (1972) An electrodiagnostic index of macular degeneration. Use of a checkerboard pattern stimulus. Arch Ophthalmol 88(6):619–624PubMedCrossRefGoogle Scholar
  29. 29.
    Walter P, Konigsfeld P, Soudavar F, Brunner R (2000) Unusual visual evoked potentials in patients with age-related macular degeneration. Ophthalmologica 214(5):312–319PubMedCrossRefGoogle Scholar
  30. 30.
    Graham SL, Klistorner AI, Grigg JR, Billson FA (2000) Objective VEP perimetry in glaucoma: asymmetry analysis to identify early deficits. J Glaucoma 9(1):10–19PubMedCrossRefGoogle Scholar
  31. 31.
    Gin TJ, Luu CD, Guymer RH (2011) Central retinal function as measured by the multifocal electroretinogram and flicker perimetry in early age-related macular degeneration. Invest Ophthalmol Vis Sci 52(12):9267–9274PubMedCrossRefGoogle Scholar
  32. 32.
    Han DP, Thompson HS, Folk JC (1985) Differentiation between recently resolved optic neuritis and central serous retinopathy. Use of tests of visual function. Arch Ophthalmol 103(3):394–396PubMedCrossRefGoogle Scholar
  33. 33.
    Yu DY, Cringle S, Valter K, Walsh N, Lee D, Stone J (2004) Photoreceptor death, trophic factor expression, retinal oxygen status, and photoreceptor function in the P23H rat. Invest Ophthalmol Vis Sci 45(6):2013–2019PubMedCrossRefGoogle Scholar
  34. 34.
    Chrysostomou V, Stone J, Valter K (2009) Life history of cones in the rhodopsin-mutant P23H-3 rat: evidence of long-term survival. Invest Ophthalmol Vis Sci 50(5):2407–2416PubMedCrossRefGoogle Scholar
  35. 35.
    Okawa H, Sampath AP, Laughlin SB, Fain GL (2008) ATP consumption by mammalian rod photoreceptors in darkness and in light. Curr Biol 18(24):1917–1921PubMedCrossRefGoogle Scholar
  36. 36.
    Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Comp Neurol 292(4):497–523PubMedCrossRefGoogle Scholar
  37. 37.
    Ivers RQ, Optom B, Macaskill P, Cumming RG, Mitchell P (2001) Sensitivity and specificity of tests to detect eye disease in an older population. Ophthalmology 108(5):968–975PubMedCrossRefGoogle Scholar
  38. 38.
    Gerth C, Hauser D, Delahunt PB, Morse LS, Werner JS (2003) Assessment of multifocal electroretinogram abnormalities and their relation to morphologic characteristics in patients with large drusen. Arch Ophthalmol 121(10):1404–1414PubMedCrossRefGoogle Scholar
  39. 39.
    Fortune B, Schneck ME, Adams AJ (1999) Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 40(11):2638–2651PubMedGoogle Scholar
  40. 40.
    White JM, Bedell HE (1990) The oculomotor reference in humans with bilateral macular disease. Invest Ophthalmol Vis Sci 31(6):1149–1161PubMedGoogle Scholar
  41. 41.
    Schuchard RA (2005) Preferred retinal loci and macular scotoma characteristics in patients with age-related macular degeneration. Can J Ophthalmol 40(3):303–312PubMedGoogle Scholar
  42. 42.
    Timberlake GT, Mainster MA, Peli E, Augliere RA, Essock EA, Arend LE (1986) Reading with a macular scotoma. I. Retinal location of scotoma and fixation area. Invest Ophthalmol Vis Sci 27(7):1137–1147PubMedGoogle Scholar
  43. 43.
    Tarita-Nistor L, Brent MH, Steinbach MJ, Gonzalez EG (2011) Fixation stability during binocular viewing in patients with age-related macular degeneration. Invest Ophthalmol Vis Sci 52(3):1887–1893PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Faran Sabeti
    • 1
    Email author
  • Andrew C. James
    • 1
  • Rohan W. Essex
    • 1
    • 2
  • Ted Maddess
    • 1
  1. 1.ARC Centre of Excellence in Vision Science, John Curtin School of Medical ResearchThe Australian National University (ANU)CanberraAustralia
  2. 2.Ophthalmology Department, Canberra HospitalThe Australian National UniversityCanberraAustralia

Personalised recommendations