Skip to main content

Advertisement

Log in

Dichoptic multifocal visual evoked potentials identify local retinal dysfunction in age-related macular degeneration

Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the ability of multifocal visual evoked potentials (mfVEPs) to identify functional loss in patients with early and exudative age-related macular degeneration (AMD). A dichoptic multifocal stimulus presentation was employed to investigate the regional effects of AMD and the potential diagnostic utility in macular disease.

Methods

MfVEP responses were recorded from 19 unilateral exudative AMD patients with non-exudative (n = 15) or normal (n = 4) presentations in the fellow eye and 28 age-matched controls. Root mean square (RMS) waveforms were pooled across selected EEG channels to produce global field RMS (gfRMS) waveforms. GfRMS amplitudes and response delays were analysed by multivariate linear models, and diagnostic capacity was measured using areas under the curve (AUC) of receiver operator characteristic plots.

Results

The mean gfRMS amplitude of the exudative eye of AMD patients was significantly reduced compared with the controls (−2.03 ± 0.08 dB, t = −12.9). Fellow non-exudative AMD eyes were less effected but still significantly reduced (−0.84 ± 0.07 dB, t = −11.5). No significant difference in mean gfRMS delay of AMD eyes across the central 46° was observed. AUC values of 100 ± 0.0 % (mean ± SE) for exudative and 79.7 ± 6.5 % for non-exudative eyes were obtained for response amplitudes.

Conclusion

The study demonstrated that mfVEP identified retinal dysfunction in both exudative AMD and fellow non-exudative AMD eyes, but mostly affecting the macular field. The reduced testing duration and good diagnostic accuracy suggest that dichoptic mfVEPs may be a sensitive tool for monitoring progression in AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Regan D, Heron JR (1969) Clinical investigation of lesions of the visual pathway: a new objective technique. J Neurol Neurosurg Psychiatry 32(5):479–483

    Article  PubMed  CAS  Google Scholar 

  2. Milner BA, Regan D, Heron JR (1974) Differential diagnosis of multiple sclerosis by visual evoked potential recording. Brain 97(4):755–772

    Article  PubMed  CAS  Google Scholar 

  3. Cappin JM, Nissim S (1975) Visual evoked responses in the assessment of field defects in glaucoma. Arch Ophthalmol 93(1):9–18

    Article  PubMed  CAS  Google Scholar 

  4. Baseler HA, Sutter EE, Klein SA, Carney T (1994) The topography of visual evoked response properties across the visual field. Electroencephalogr Clin Neurophysiol 90(1):65–81

    Article  PubMed  CAS  Google Scholar 

  5. Ruseckaite R, Maddess T, Danta G, Lueck CJ, James AC (2005) Sparse multifocal stimuli for the detection of multiple sclerosis. Ann Neurol 57(6):904–913

    Article  PubMed  Google Scholar 

  6. Hood DC, Zhang X, Greenstein VC, Kangovi S, Odel JG, Liebmann JM, Ritch R (2000) An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve. Invest Ophthalmol Vis Sci 41(6):1580–1587

    PubMed  CAS  Google Scholar 

  7. Chen JY, Hood DC, Odel JG, Behrens MM (2006) The effects of retinal abnormalities on the multifocal visual evoked potential. Invest Ophthalmol Vis Sci 47(10):4378–4385

    Article  PubMed  Google Scholar 

  8. Wolff BE, Bearse MA Jr, Schneck ME, Barez S, Adams AJ (2010) Multifocal VEP (mfVEP) reveals abnormal neuronal delays in diabetes. Doc Ophthalmol 121(3):189–196

    Article  PubMed  Google Scholar 

  9. Lennerstrand G (1982) Delayed visual evoked cortical potentials in retinal disease. Acta Ophthalmol (Copenh) 60(4):497–504

    Article  CAS  Google Scholar 

  10. Marcus M, Merin S, Wolf M, Feinsod M (1983) Electrophysiologic tests in assessment of senile macular degeneration. Ann Ophthalmol 15(3):235–238

    PubMed  CAS  Google Scholar 

  11. Folk JC, Thompson HS, Han DP, Brown CK (1984) Visual function abnormalities in central serous retinopathy. Arch Ophthalmol 102(9):1299–1302

    Article  PubMed  CAS  Google Scholar 

  12. Bass SJ, Sherman J, Bodis-Wollner I, Nath S (1985) Visual evoked potentials in macular disease. Invest Ophthalmol Vis Sci 26(8):1071–1074

    PubMed  CAS  Google Scholar 

  13. Sherman J, Bass SJ, Noble KG, Nath S, Sutija V (1986) Visual evoked potential (VEP) delays in central serous choroidopathy. Invest Ophthalmol Vis Sci 27(2):214–221

    PubMed  CAS  Google Scholar 

  14. Johnson LN, Yee RD, Hepler RS, Martin DA (1987) Alteration of the visual evoked potential by macular holes: comparison with optic neuritis. Graefes Arch Clin Exp Ophthalmol 225(2):123–128

    Article  PubMed  CAS  Google Scholar 

  15. Shimada Y, Adachi-Usami E, Murayama K (1997) How are macular changes reflected in pattern visually evoked cortical potentials? Acta Ophthalmol Scand 75(3):277–280

    Article  PubMed  CAS  Google Scholar 

  16. Negishi C, Takasoh M, Fujimoto N, Tsuyama Y, Adachi-Usami E (2001) Visual evoked potentials in relation to visual acuity in macular disease. Acta Ophthalmol Scand 79(3):271–276

    Article  PubMed  CAS  Google Scholar 

  17. Rosli Y, Xin-Lin G, James A, Maddess T (2008) Neural signal processing of mfVEP responses from AMD patients. In: Information technology. International symposium on, pp 1–6

  18. James AC (2003) The pattern-pulse multifocal visual evoked potential. Invest Ophthalmol Vis Sci 44(2):879–890

    Article  PubMed  Google Scholar 

  19. James AC, Ruseckaite R, Maddess T (2005) Effect of temporal sparseness and dichoptic presentation on multifocal visual evoked potentials. Vis Neurosci 22(1):45–54

    Article  PubMed  Google Scholar 

  20. Maddess T, James AC, Bowman EA (2005) Contrast response of temporally sparse dichoptic multifocal visual evoked potentials. Vis Neurosci 22(2):153–162

    Article  PubMed  Google Scholar 

  21. James AC, Maddess T, Goh XL, Winkles N (2005) Spatially sparse pattern-pulse stimulation enhances multifocal visual evoked potential analysis. Invest Ophthalmol Vis Sci 46(5):3602

    Google Scholar 

  22. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Article  PubMed  CAS  Google Scholar 

  23. Bell A, James AC, Kolic M, Essex RW, Maddess T (2010) Dichoptic multifocal pupillography reveals afferent visual field defects in early type 2 diabetes. Invest Ophthalmol Vis Sci 51(1):602–608

    Article  PubMed  Google Scholar 

  24. Sabeti F, Maddess T, Essex RW, James AC (2011) Multifocal pupillographic assessment of age-related macular degeneration. Optom Vis Sci 88(12):1477–1485

    PubMed  Google Scholar 

  25. Stensaas SS, Eddington DK, Dobelle WH (1974) The topography and variability of the primary visual cortex in man. J Neurosurg 40(6):747–755

    Article  PubMed  CAS  Google Scholar 

  26. Rademacher J, Caviness VS Jr, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3(4):313–329

    Article  PubMed  CAS  Google Scholar 

  27. Curcio CA, Medeiros NE, Millican CL (1996) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci 37(7):1236–1249

    PubMed  CAS  Google Scholar 

  28. Sokol S (1972) An electrodiagnostic index of macular degeneration. Use of a checkerboard pattern stimulus. Arch Ophthalmol 88(6):619–624

    Article  PubMed  CAS  Google Scholar 

  29. Walter P, Konigsfeld P, Soudavar F, Brunner R (2000) Unusual visual evoked potentials in patients with age-related macular degeneration. Ophthalmologica 214(5):312–319

    Article  PubMed  CAS  Google Scholar 

  30. Graham SL, Klistorner AI, Grigg JR, Billson FA (2000) Objective VEP perimetry in glaucoma: asymmetry analysis to identify early deficits. J Glaucoma 9(1):10–19

    Article  PubMed  CAS  Google Scholar 

  31. Gin TJ, Luu CD, Guymer RH (2011) Central retinal function as measured by the multifocal electroretinogram and flicker perimetry in early age-related macular degeneration. Invest Ophthalmol Vis Sci 52(12):9267–9274

    Article  PubMed  Google Scholar 

  32. Han DP, Thompson HS, Folk JC (1985) Differentiation between recently resolved optic neuritis and central serous retinopathy. Use of tests of visual function. Arch Ophthalmol 103(3):394–396

    Article  PubMed  CAS  Google Scholar 

  33. Yu DY, Cringle S, Valter K, Walsh N, Lee D, Stone J (2004) Photoreceptor death, trophic factor expression, retinal oxygen status, and photoreceptor function in the P23H rat. Invest Ophthalmol Vis Sci 45(6):2013–2019

    Article  PubMed  Google Scholar 

  34. Chrysostomou V, Stone J, Valter K (2009) Life history of cones in the rhodopsin-mutant P23H-3 rat: evidence of long-term survival. Invest Ophthalmol Vis Sci 50(5):2407–2416

    Article  PubMed  Google Scholar 

  35. Okawa H, Sampath AP, Laughlin SB, Fain GL (2008) ATP consumption by mammalian rod photoreceptors in darkness and in light. Curr Biol 18(24):1917–1921

    Article  PubMed  CAS  Google Scholar 

  36. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Comp Neurol 292(4):497–523

    Article  PubMed  CAS  Google Scholar 

  37. Ivers RQ, Optom B, Macaskill P, Cumming RG, Mitchell P (2001) Sensitivity and specificity of tests to detect eye disease in an older population. Ophthalmology 108(5):968–975

    Article  PubMed  CAS  Google Scholar 

  38. Gerth C, Hauser D, Delahunt PB, Morse LS, Werner JS (2003) Assessment of multifocal electroretinogram abnormalities and their relation to morphologic characteristics in patients with large drusen. Arch Ophthalmol 121(10):1404–1414

    Article  PubMed  Google Scholar 

  39. Fortune B, Schneck ME, Adams AJ (1999) Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 40(11):2638–2651

    PubMed  CAS  Google Scholar 

  40. White JM, Bedell HE (1990) The oculomotor reference in humans with bilateral macular disease. Invest Ophthalmol Vis Sci 31(6):1149–1161

    PubMed  CAS  Google Scholar 

  41. Schuchard RA (2005) Preferred retinal loci and macular scotoma characteristics in patients with age-related macular degeneration. Can J Ophthalmol 40(3):303–312

    PubMed  Google Scholar 

  42. Timberlake GT, Mainster MA, Peli E, Augliere RA, Essock EA, Arend LE (1986) Reading with a macular scotoma. I. Retinal location of scotoma and fixation area. Invest Ophthalmol Vis Sci 27(7):1137–1147

    PubMed  CAS  Google Scholar 

  43. Tarita-Nistor L, Brent MH, Steinbach MJ, Gonzalez EG (2011) Fixation stability during binocular viewing in patients with age-related macular degeneration. Invest Ophthalmol Vis Sci 52(3):1887–1893

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Australian Research Council (ARC) through the ARC Centre of Excellence in Vision Science (CE0561903), AusIndustry and Seeing Machines Ltd, Canberra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faran Sabeti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabeti, F., James, A.C., Essex, R.W. et al. Dichoptic multifocal visual evoked potentials identify local retinal dysfunction in age-related macular degeneration. Doc Ophthalmol 126, 125–136 (2013). https://doi.org/10.1007/s10633-012-9366-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-012-9366-6

Keywords

Navigation