Skip to main content

Advertisement

Log in

Effect of test duration on the visual-evoked potential (VEP) and alpha-wave responses

Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Primary objective

The purpose of this study was to assess the effect of test duration on the visual-evoked potential (VEP) and related alpha power spectrum measures.

Design and methods

Two conditions (eyes-closed and eyes-open) were tested using four different durations: 10, 20, 45, and 60 s. The Diopsys™ NOVA-TR system was used to obtain the visual-evoked potential (VEP) and extracted alpha wave with its related power spectrum. Sixteen visually normal, young-adult subjects (aged 22–25 years) participated in the experiment. The stimulus for the eyes-open condition consisted of a black-and-white, alternating checkerboard pattern with a small central fixation target. All trials were performed during one session.

Results

Regarding the VEP parameters, only variability of the VEP amplitude changed significantly with test duration. Sentence should end with a period, not a colon. It decreased with increasing test duration, with the 45- and 60-s trials showing similarly low variability. Regarding the alpha-wave parameters, test duration did not have a significant effect on either the mean alpha power or its variability across trials.

Conclusions

The findings demonstrate that forty-five-second test durations are sufficient to minimize intra-session variability of the VEP amplitude and latency measurements, whereas 10-s test durations may be sufficient for accurate measurement of the alpha wave. Optimization of test duration allows for repeatable measures with less total test time. This is especially important for special clinical populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schroeder CE, Tenke CE, Givre SJ, Arezzo JC, Vaughan HG (1991) Striate cortical contribution to the surface-recorded pattern-reversal VEP in the alert monkey. Vis Res 11:1143–1157

    Article  Google Scholar 

  2. Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA (2001) Cortical sources of the early components of the visually evoked potential. Hum Brain Mapp 15:95–111

    Article  Google Scholar 

  3. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, Vaegan (2009) ISCEV standard for clinical visual-evoked potentials (2009 update). Doc Ophthalmol 120:111–119

    Article  PubMed  Google Scholar 

  4. Tello C, DeMoraes CGV, Prata TS, Derr P, Patel J, Siegfried J, Liebmann JM, Ritch R (2010) Repeatability of short-duration transient visual evoked potentials in normal subjects. Doc Ophthalmol 120:219–228

    Article  PubMed  Google Scholar 

  5. Rademacher J, Caviness VS, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3:313–329

    Article  PubMed  CAS  Google Scholar 

  6. Aine CJ, Supek S, George JS, Ranken D, Lewine J, Sanders J, Best E, Tiee W, Flynn ER, Wood CC (1996) Retinotopic organization of human visual cortex: departures from the classical model. Cereb Cortex 6:354–361

    Article  PubMed  CAS  Google Scholar 

  7. Ossenblok P, Spekreijse H (1991) The extrastriate generators of the EP to checkerboard onset: a source localization approach. Electroencephalogr Clin Neurophysiol 80:181–193

    Article  PubMed  CAS  Google Scholar 

  8. Klistorner AI, Graham SL (2001) Electroencephalogram-based scaling of multifocal visual evoked potentials: effect on intersubject amplitude variability. Invest Ophthalmol Vis Sci 42:2145–2152

    PubMed  CAS  Google Scholar 

  9. Mezer E, Bahir Y, Leibu R, Perlman I (2004) Effect of defocusing and of distracted attention upon recordings of the visual evoked potential. Doc Ophthalmol 109:229–238

    Article  PubMed  Google Scholar 

  10. Ciuffreda KJ (1999) Nearwork-induced transient myopia: basic and clinical aspects. Optom Vis Dev 30:5–20

    Google Scholar 

  11. Chase C, Tosha C, Borsting E, Ridder W (2009) Visual discomfort and objective measures of static accommodation. Optom Vis Sci 86:883–889

    Article  PubMed  Google Scholar 

  12. Tosha C, Borsting E, Ridder WH, Chase C (2009) Accommodation response and visual discomfort. Ophthalmic Physiol Opt 29:625–633

    Article  PubMed  Google Scholar 

  13. Dumermuth G (1973) Numerical spectral analysis of the electroencephalogram. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, 5A. Elsevier, Amsterdam, pp 33–60

    Google Scholar 

  14. Gasser T (1977) General characteristics of the EEG as a signal. In: Remond A (ed) EEG informatics. A didactic review of methods and applications of EEG data processing. Elsevier, Amsterdam, pp 37–55

    Google Scholar 

  15. Oken BS, Chiappa KH (1988) Short-term variability in EEG frequency analysis. Electroencephalogr Clin Neurophysiol 69:191–198

    Article  PubMed  CAS  Google Scholar 

  16. Matousek M, Petersen I (1973) Frequency analysis of the EEG in normal children and adolescents. In: Kellaway P, Petersen I (eds) Automation of clinical electroencephalography. Raven Press, New York, pp 75–102

    Google Scholar 

  17. Burgess A, Gruzelier J (1993) Individual reliability of amplitude distribution in topographical mapping of EEG. Electroencephalogr Clin Neurophysiol 86:219–223

    Article  PubMed  CAS  Google Scholar 

  18. Maltez J, Hyllienmark L, Nikulin VV, Brismar T (2004) Time course and variability of power in different frequency bands of EEG during resting conditions. Clin Neurophysiol 34:195–202

    Article  Google Scholar 

  19. Lynch J, Paskewitz DA, Orne MT (1974) Inter-session stability of human alpha rhythm densities. Electroencephalogr Clin Neurophysiol 36:538–540

    Article  PubMed  CAS  Google Scholar 

  20. Van Dis H, Corner M, Dapper R, Hanewald G, Kok H (1979) Individual differences in the human electroencephalogram during quiet wakefulness. Electroencephalogr Clin Neurophysiol 47:87–94

    Article  PubMed  Google Scholar 

  21. Mocks J, Gasser T (1984) How to select epochs of the EEG at rest for quantitative analysis. Electroencephalogr Clin Neurophysiol 58:89–92

    Article  PubMed  CAS  Google Scholar 

  22. Freed S, Fishman Hellerstein L (1997) Visual electrodiagnostic findings in mild traumatic brain injury. Brain Inj 11:25–36

    Article  PubMed  CAS  Google Scholar 

  23. Soininen H, Partanen J, Laulumaa V, Helkala E-L, Laakso M, Riekkinen PJ (1989) Longitudinal EEG spectral analysis in early stage of Alzheimer’s disease. Electroencephalogr Clin Neurophysiol 72:290–297

    Article  PubMed  CAS  Google Scholar 

  24. Tineke G, Boehler CN, Kenemans JL, Woldorff MG (2011) Differential functional roles of slow-wave and oscillatory alpha activity in visual sensory cortex during anticipatory visual-spatial attention. Cereb Cortex 21:2204–2216

    Article  Google Scholar 

  25. Fuller P (1978) Attention and the EEG alpha rhythm in learning disabled children. J Learn Disabil 11:303–312

    Article  PubMed  CAS  Google Scholar 

  26. Kelly SP, Gomez-Ramirez M, Foxe JJ (2009) The strength of anticipatory spatial biasing predicts target discrimination at attended locations: a high-density EEG study. Eur J Neurosci 30:2224–2234

    Article  PubMed  Google Scholar 

  27. van Dijk H, Schoffelen JM, Oostenveld R, Jensen O (2008) Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J Neurosci 28:1816–1823

    Article  PubMed  Google Scholar 

  28. Yadav NK, Ludlam DP, Ciuffreda KJ (2012) Effect of different stimulus configurations on the visual-evoked potential (VEP). Doc Ophthalmol 124:177–196

    Article  PubMed  Google Scholar 

  29. Ciuffreda KJ, Yadav NK, Ludlam DP (in press) Effect of binasal occlusion (BNO) on the visual-evoked potential (VEP) in mild traumatic brain injury (mTBI). Brain Inj PMID 22900490

  30. Benjamin WJ (2006) Borish’s clinical refraction, 2nd edn. Butterworth-Heinemann, St Louis

    Google Scholar 

  31. Willeford KT, Ciuffreda KJ, Yadav NK, Ludlam DP (in press). Objective assessment of human visual attention. Doc Ophthalmol doi:10.1007/s10633-012-9357-7

  32. Bradley JV (1958) Complete counterbalancing of immediate sequential effects in a Latin square design. J Amer Stat Assoc 53:525–528

    Article  Google Scholar 

  33. Gomarus HK, Wijers AA, Minderaa RB, Althaus M (2009) Do children with ADHD and/or PDD-NOS differ in reactivity of alpha/theta ERD/ERS to manipulations of cognitive load and stimulus relevance? Clin Neurophysiol 120:73–79

    Article  PubMed  Google Scholar 

  34. Dumermuth G (1987) Spectral analysis of the EEG. Neuropsychobiology 17:85–99

    Article  PubMed  CAS  Google Scholar 

  35. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res 29:169–195

    Article  CAS  Google Scholar 

  36. Salkind N (ed) (2010) Encyclopedia of research design. Sage, Thousand Oaks

    Google Scholar 

  37. Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vis Res 23:775–785

    Article  PubMed  CAS  Google Scholar 

  38. Swindale NV, Mitchell DE (1994) Comparison of receptive field properties of neurons in area 17 of normal and bilaterally amblyopic cats. Exp Brain Res 99:399–410

    Article  PubMed  CAS  Google Scholar 

  39. Kara P, Reinagel P, Reid RC (2000) Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron 27:635–646

    Article  PubMed  CAS  Google Scholar 

  40. Gur M, Snodderly DM (2006) High response reliability of neurons in primary visual cortex (V1) of alert, trained monkeys. Cereb Cortex 16:888–895

    Article  PubMed  Google Scholar 

  41. Gur M, Beylin A, Snodderly DM (1997) Response variability of neurons in primary visual cortex (V1) of alert monkeys. J Neurosci 17:2914–2920

    PubMed  CAS  Google Scholar 

  42. Faisal AA, Selen LPJ, Wolpert DM (2008) Noise in the nervous system. Nat Rev Neurosci 9:203–292

    Article  Google Scholar 

  43. Salinsky MC, Oken BS, Morehead L (1991) Test-retest reliability in EEG frequency analysis. Electroencephalogr Clin Neurophysiol 79:382–392

    Article  PubMed  CAS  Google Scholar 

  44. Gasser T, Bacher P, Steinberg H (1985) Test-retest reliability of spectral parameters of the EEG. Electroencephalogr Clin Neurophysiol 60:312–319

    Article  PubMed  CAS  Google Scholar 

  45. Pollock VE, Schneider LS, Lyness SA (1991) Reliability of topographic quantitative EEG amplitude in healthy late-middle-aged and elderly subjects. Electroencephalogr Clin Neurophysiol 79:20–26

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Diopsys™ for the use of their equipment and NIH grant 5-T35-EY020481-03 for support to Kevin T. Willeford.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin T. Willeford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willeford, K.T., Ciuffreda, K.J. & Yadav, N.K. Effect of test duration on the visual-evoked potential (VEP) and alpha-wave responses. Doc Ophthalmol 126, 105–115 (2013). https://doi.org/10.1007/s10633-012-9363-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-012-9363-9

Keywords

Navigation