Skip to main content

Advertisement

Log in

The reproducibility of binocular pattern reversal visual evoked potentials: a single subject design

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

This study aimed to investigate the within-participant variability over time of both amplitude and peak latency measures of pattern reversal visual evoked potentials (pVEPs). As a large number of factors are known to contribute to the variability of the pVEPs (such as fixation instability and drowsiness), testing was conducted in controlled conditions with two co-operative participants. PVEPs were recorded during 24 sessions, over an eight-week period using the same equipment and recording settings. The participants viewed a plasma monitor binocularly from a distance of 1 meter. High contrast (97%), black and white checks of side subtense 50′, 25′, and 12.5′ pattern reversed 3/s in a 28 degree test field. The different sized checks were presented in a pseudo-random order. Three runs, each of 100 trials, were acquired to each stimulus from an active electrode placed at Oz referred to aFz. The amplitude of N80-P100 and the latency of P100 were measured. P100 amplitude and latency were stable across sessions and did not depend upon the order of check size presentation. As expected, variation in amplitude was greater than peak latency. The coefficients of variation for different check sizes and participants were 9–14% for pVEP amplitude, but only 1–2% for P100 latency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sokol S (1976) Visually evoked potentials: theory, techniques and clinical applications. Surv Ophthalmol 21:18–44

    Article  CAS  PubMed  Google Scholar 

  2. Harding GF (2006) History of visual evoked cortical testing. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision, 2nd edn. MIT Press, London, pp 15–19

    Google Scholar 

  3. Halliday AM (1978) Clinical applications of evoked potentials. In: Matthews WB, Glaser GH (eds) Recent advances in clinical neurology, 2nd edn. Churchill Livingstone, London, pp 47–73

    Google Scholar 

  4. Trip SA, Schlottmann PG, Jones SJ, Wai-Yung L, Garway-Heath DF, Thompson AJ, Plant GT, Miller DH (2006) Optic nerve atrophy and retinal nerve fibre layer thinning following optic neuritis: evidence that axonal loss is a substrate of MRI-detected atrophy. Neuroimage 31:286–293

    Article  PubMed  Google Scholar 

  5. Brusa A, Jones SJ, Plant GT (2001) Long-term remyelination after optic neuritis: A 2-year visual evoked potential and psychophysical serial study. Brain 124:468–479

    Article  CAS  PubMed  Google Scholar 

  6. Levi DM (1982) Do visual evoked potentials studies reveal amblyopic abnormalities not readily apparent in psychophysical tests? Ann N Y Acad Sci 388:615–621

    Article  CAS  PubMed  Google Scholar 

  7. Oner A, Coskun M, Evereklioglu C, Dogan H (2004) Pattern VEP is a useful technique in monitoring the effectiveness of occlusion therapy in amblyopic eyes under occlusion therapy. Doc Ophthalmol 109:223–227

    Article  PubMed  Google Scholar 

  8. Liasis A, Nischal KK, Walters B, Thompson D, Hardy S, Towell A, Dunaway D, Jones B, Evans R, Hayward R (2006) Monitoring visual function in children with syndromic craniosynostosis: a comparison of three methods. Arch Ophthalmol 124:1119–1126

    Article  PubMed  Google Scholar 

  9. Hidajat RR, McLay JL, Goode DH, Hidayat JR (2006) The value of VEP in the diagnosis and post-operative monitoring of meningioma. Doc Ophthalmol 113:165–169

    Article  PubMed  Google Scholar 

  10. Moradi P, Robson AG, Rose GE, Holder GE (2008) Electrophysiological monitoring in a patient with an optic nerve glioma. Doc Ophthalmol 117:171–174

    Article  PubMed  Google Scholar 

  11. Taylor MJ, McCulloch DL (1992) Visual evoked potentials in infants and children. J Clin Neurophysiol 9:357–372

    Article  CAS  PubMed  Google Scholar 

  12. Meienberg O, Kutak L, Smolenski C, Ludin HP (1979) Pattern reversal evoked cortical responses in normals: a study of different methods of stimulation and potential reproducibility. J Neurol 222:81–93

    Article  CAS  PubMed  Google Scholar 

  13. Diener HC, Scheibler H (1980) Follow-up studies of visual potentials in multiple sclerosis evoked by checkerboard and foveal stimulation. Electroencephalogr Clin Neurophysiol 49:490–496

    Article  CAS  PubMed  Google Scholar 

  14. de Weerd AW, Jonkman EJ (1982) Changes in visual and short-latency somatosensory evoked potentials in patients with multiple sclerosis. In: Courjon J, Mauguiere F, Revol M (eds) Advances in Neurology: Clinical applications of evoked potentials in neurology. Raven Press, New York, pp 527–534

    Google Scholar 

  15. Cohen SN, Syndulko K, Hansch E, Tourtellotte WW, Potvin AR (1982) Variability on serial testing of visual evoked potentials in patients with multiple sclerosis. In: Courjon J, Mauguiere F, Revol M (eds) Advances in Neurology: Clinical applications of evoked potentials in neurology. Raven Press, New York, pp 559–565

    Google Scholar 

  16. Aminoff MJ, Davis SL, Panitch HS (1984) Serial evoked potential studies in patients with definite multiple sclerosis. Arch Neurol 41:1197–1202

    CAS  PubMed  Google Scholar 

  17. Becker WJ, Richards IM (1984) Serial pattern shift visual evoked potentials in multiple sclerosis. Can J Neurol Sci 11:53–59

    CAS  PubMed  Google Scholar 

  18. Skuse NF, Burke D, McKeon B (1984) Reproducibility of the visual evoked potential using a light-emitting diode stimulator. J Neurol Neurosurg Psychiatry 47:623–629

    Article  CAS  PubMed  Google Scholar 

  19. Carroll WM, Barrett G, Halliday AM (1985) Unidirectional preponderance of P100 latency changes in a serial VEP study of multiple sclerosis. Electroencephalogr Clin Neurophysiol 61:S210

    Google Scholar 

  20. Hammond SR, MacCallum S, Yiannikas C, Walsh JC, McLeod JG (1987) Variability on serial testing of pattern reversal visual evoked potential latencies from full-field, half-field and foveal stimulation in control subjects. Electroencephalogr Clin Neurophysiol 66:401–408

    Article  CAS  PubMed  Google Scholar 

  21. Oken BS, Chiappa KH, Gill E (1987) Normal temporal variability of the P100. Electroencephalogr Clin Neurophysiol 68:153–156

    Article  CAS  PubMed  Google Scholar 

  22. Shors TJ, Ary JP, Eriksen KJ, Wright KW (1986) P100 amplitude variability of the pattern visual evoked potential. Electroencephalogr Clin Neurophysiol 65:316–319

    Article  CAS  PubMed  Google Scholar 

  23. Halliday AM, Halliday E, Kriss A, McDonald WI, Mushin J (1976) The pattern-evoked potential in compression of the anterior visual pathways. Brain 99:357–374

    Article  CAS  PubMed  Google Scholar 

  24. Otto T, Bach M (1997) Reproducibility of the pattern electroretinogram. Ophthalmologe 94:217–221

    Article  CAS  PubMed  Google Scholar 

  25. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, Vaegan (2010) ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 120:111–119

    Article  PubMed  Google Scholar 

  26. Wolery M, Harris SR (1982) Interpreting results of single-subject research designs. Phys Ther 62:445–452

    CAS  PubMed  Google Scholar 

  27. Sarnthein J, Andersson M, Zimmermann MB, Zumsteg D (2009) High test-retest reliability of checkerboard reversal visual evoked potentials (VEP) over 8 months. Clin Neurophysiol 120:1835–1840

    Article  PubMed  Google Scholar 

  28. Sokol S, Moskowitz A, Towle VL (1981) Age-related changes in the latency of the visual evoked potential: influence of check size. Electroencephalogr Clin Neurophysiol 51:559–562

    Article  CAS  PubMed  Google Scholar 

  29. Torok B, Meyer M, Wildberger H (1992) The influence of pattern size on amplitude, latency and wave form of retinal and cortical potentials elicited by checkerboard pattern reversal and stimulus onset-offset. Electroencephalogr Clin Neurophysiol 84:13–19

    Article  CAS  PubMed  Google Scholar 

  30. Morgan RK, Nugent B, Harrison JM, O’Connor PS (1985) Voluntary alteration of pattern visual evoked responses. Ophthalmology 92:1356–1363

    CAS  PubMed  Google Scholar 

  31. Skuse NF, Burke D (1992) Sequence-dependent deterioration in the visual evoked potential in the absence of drowsiness. Electroencephalogr Clin Neurophysiol 84:20–25

    Article  CAS  PubMed  Google Scholar 

  32. Joost W, Bach M, Schulte-Monting J (1992) Influence of mood on visually evoked potentials: a prospective longitudinal study. Int J Psychophysiol 12:147–153

    Article  CAS  PubMed  Google Scholar 

  33. Stolz G, Aschoff JC, Born J, Aschoff J (1988) VEP, physiological and psychological circadian variations in humans. J Neurol 235:308–313

    Article  CAS  PubMed  Google Scholar 

  34. Cant BR, Hume AL, Shaw NA (1978) Effects of luminance on the pattern visual evoked potential in multiple sclerosis. Electroencephalogr Clin Neurophysiol 45:496–504

    Article  CAS  PubMed  Google Scholar 

  35. Binnie CD, Rowan AJ, Gutter TH (1982) A manual of electroencephalographic technology. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Phillippa Cumberland for her statistical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alki Liasis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mellow, T.B., Liasis, A., Lyons, R. et al. The reproducibility of binocular pattern reversal visual evoked potentials: a single subject design. Doc Ophthalmol 122, 133–139 (2011). https://doi.org/10.1007/s10633-011-9267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-011-9267-0

Keywords

Navigation