Skip to main content

Advertisement

Log in

Functional involvement of cone photoreceptors in advanced glaucoma: a multifocal electroretinogram study

  • Original research article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

The purpose of the study is (1) to demonstrate the anatomical variation of cone photoreceptor density across normal retina as a sectoral amplitude asymmetry of photopic multifocal electroretinogram (mfERG) and (2) to study the potential presence of sequential or differential, functional cone photoreceptor damage in glaucoma using this amplitude asymmetry. A 37-Block scaled mfERG was recorded from 22 controls and 27 glaucoma subjects. The N1 and P1 amplitudes of averaged responses from corresponding zones nasal and temporal to fovea were analyzed for asymmetry in controls and glaucoma subjects. Amplitude asymmetry was demonstrable for both N1 (p < 0.001) and P1 (p < 0.001) parameters in control subjects. Although this amplitude asymmetry was preserved in glaucoma subjects with moderate field defects, it was not demonstrable in patients with advanced field defects. The anatomical variation in cone photoreceptor distribution across normal retina is demonstrated as an amplitude asymmetry in first order kernel responses of mfERG. The cone photoreceptors in the region nasal to fovea appear to be affected only in advanced glaucoma possibly suggesting that photoreceptors could follow a sequential damage like the overlying neuroretinal rim in glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sutter EE (1991) The fast m-transform: a fast computation of cross-correlations with binary m-sequences. Soc Ind Appl Math 20:686–694

    Google Scholar 

  2. Sutter EE, Tran D (1992) The field topography of ERG components in man, I: the photopic luminance response. Vis Res 32:433–466

    Article  CAS  PubMed  Google Scholar 

  3. Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Palmowski-Wolfe AM (2008) ISCEV guidelines for clinical multifocal electroretinography (2007 edition). Doc Ophthalmol 116:1–11

    Article  PubMed  Google Scholar 

  4. Hood DC, Frishman LJ, Saszik S, Viswanathan S (2002) Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci 43(5):1673–1685

    PubMed  Google Scholar 

  5. Jonas JB, Schneider U, Naumann GO (1992) Count and density of human retinal photoreceptors. Graefes Arch Clin Exp Ophthalmol 230(6):505–510

    Article  CAS  PubMed  Google Scholar 

  6. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Comp Neurol 292(4):497–523

    Article  CAS  PubMed  Google Scholar 

  7. Hitchings RA, Wheeler CA (1980) The optic disk in glaucoma (IV. Optic disc evaluation in the ocular hypertensive patient). Br J Ophthalmol 64:232–239

    Article  CAS  PubMed  Google Scholar 

  8. Hitchings RA (1978) The optic disk in glaucoma (III. Diffuse optic disk pallor with raised intraocular pressure). Br J Ophthalmol 62:670–675

    Article  CAS  PubMed  Google Scholar 

  9. Hitchings RA, Spaeth GL (1977) The optic disk in glaucoma (II. Correlation of the appearance of the optic disc with the visual field). Br J Ophthalmol 61:107–113

    Article  CAS  PubMed  Google Scholar 

  10. Jonas JB, Fernández M, Stürmer J (1993) Pattern of glaucomatous neuroretinal rim loss. Ophthalmology 100:63–67

    CAS  PubMed  Google Scholar 

  11. Kirsch RE, Anderson DR (1973) Clinical recognition of glaucomatous cupping. Am J Ophthalmol 75:442–454

    CAS  PubMed  Google Scholar 

  12. Pederson JE, Anderson DR (1980) The mode of progressive disc cupping in ocular hypertension and glaucoma. Arch Ophthalmol 98:490–495

    CAS  PubMed  Google Scholar 

  13. Tuulonen A, Airaksinen PJ (1991) Initial glaucomatous optic disk and retinal nerve fiber layer abnormalities and the mode of their progression. Am J Ophthalmol 111:485–490

    CAS  PubMed  Google Scholar 

  14. Kendell KR, Quigley HA, Kerrigan LA, Pease ME, Quigley EN (1995) Primary open angle glaucoma is not associated with photoreceptor loss. Invest Ophthalmol Vis Sci 36:200–205

    CAS  PubMed  Google Scholar 

  15. Panda S, Jonas JB (1992) Decreased photoreceptor count in human eyes with secondary angle closure glaucoma. Invest Ophthalmol Vis Sci. 33:2532–2536

    CAS  PubMed  Google Scholar 

  16. Hodapp E, Parrish RK, Anderson DR (1993) Clinical decisions in glaucoma. The CV: Mosby Co, St. Louis, pp 52–61

    Google Scholar 

  17. Wilker KC, Williams RW, Rakic P (1990) Photoreceptor mosaic: number and distribution of cones and rods in rhesus monkey retina. J Comp Neurol 297:499–508

    Article  Google Scholar 

  18. Curcio CA, Millican CL, Allen KA, Kalina RE (1993) Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. Invest Ophthalmol Vis Sci 34:3278–3296

    CAS  PubMed  Google Scholar 

  19. Hood DC, Frishman LJ, Viswanathan S, Robson JG, Ahmed J (1999) Evidence for a substantial ganglion cell contribution to the primate electroretinogram (ERG): effect of TTX on the multifocal ERG in macaque. Vis Neurosci 16(3):411–416

    Article  CAS  PubMed  Google Scholar 

  20. Hood DC, Greenstein V, Frishman LJ, Holopigian K, Viswanathan S, Seiple W, Ahmed J, Robson JG (1999) Identifying inner retinal contributions to the human multifocal ERG. Vis Res 39:2285–2291

    Article  CAS  PubMed  Google Scholar 

  21. Sutter EE, Bears MA (1999) The optic nerve component of human ERG. Vis Res 39:419–436

    Article  CAS  PubMed  Google Scholar 

  22. Bearse MA, Sutter EE (1998) Contrast dependence of multifocal ERG components. Visual science and its application, OSA Technical Digest Series 24–27

  23. Jonas JB, Gusek GC, Naumann GOH (1988) Optic disc, cup and neuroretinal rim size, configuration, and correlations in normal eyes. Invest Ophthalmol Vis Sci 29:1151–1158

    CAS  PubMed  Google Scholar 

  24. DeLeón-Ortega JE, Arthur SN, McGwin G, Xie A, Monheit BE, Girkin CA (2006) Discrimination between glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. Invest Ophthalmol Vis Sci 47:3374–3380

    Article  PubMed  Google Scholar 

  25. Quigley HA, Addicks EM, Green WR, Maumenee AE (1982) Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischaemic optic neuropathy, papilledema and toxic neuropathy. Arch Ophthalmol 100:135–146

    CAS  PubMed  Google Scholar 

  26. Karlberg B, Hedin A, Bjornberg K (1968) Electroretinography during short-term intraocular tension rise. Acta Ophthalmol 46:742–747

    Article  CAS  Google Scholar 

  27. Alvis DL (1966) Electroretinographic changes in controlled chronic open angle glaucoma. Am J Ophthalmol 61:121–131

    CAS  PubMed  Google Scholar 

  28. Bartl G, Benedikt O, Hiti H (1978) The effect of elevated intraocular pressure on the human ERG and VER. Graefes Arch Clin Exp Ophthalmol 207:275–279

    Article  Google Scholar 

  29. Fazio DT, Heckenlively JR, Martin DA, Christensen RE (1986) The Electroretinogram in advanced open angle glaucoma. Doc Ophthalmol 63:45–54

    Article  CAS  PubMed  Google Scholar 

  30. Velton IM, Korth M, Horn FK (2001) The a-wave of the dark-adapted Electroretinogram in glaucomas: are photoreceptors affected? Br J Ophthalmol 85:397–402

    Article  Google Scholar 

  31. Velton IM, Horn FK, Korth M, Velten K (2001) The b-wave of the dark-adapted Electroretinogram in patients with advanced asymmetrical glaucoma and normal subjects. Br J Ophthalmol 85:403–409

    Article  Google Scholar 

  32. Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL (1999) The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 40:1124–1136

    CAS  PubMed  Google Scholar 

  33. Hood DC, Greenstein VC, Holopigian K, Bauer R, Firoz B, Liebmann JM, Odel JG, Ritch R (2000) An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Invest Ophthalmol Vis Sci 41:1570–1579

    CAS  PubMed  Google Scholar 

  34. Hasegawa S, Takagi M, Usui T, Takada R, Abe H (2000) Waveform changes of the first order multifocal electroretinogram in patients with glaucoma. Invest Ophthalmol Vis Sci 41:1597–1603

    CAS  PubMed  Google Scholar 

  35. Klistorner A, Graham SL, Martins A (2000) Multifocal pattern electroretinogram does not demonstrate localized field defects in glaucoma. Doc Ophthalmol 100:155–165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Rashmi Rodriguez and Dr. Pretesh R Kiran (St. John’s medical college, Bangalore) for assistance in statistics. The authors are thankful to Dr. Charlier, J (Metrovision, France) for customizing mfERG stimulus. The authors are thankful to Dr. Somashekhar N and Dr. Prasanth CN (Narayana Nethralaya, Bangalore) for assistance in recruiting control subjects. The authors are thankful to Mrs. Vijayalakshmi Pires (PhD Eng Litt) and Mrs. Thaliath, NMAF for assistance in English language editing. The authors are thankful to Mrs Revathi MP for assistance in mfERG recording and Mr. Muhammed Naizal T (Narayana Ophthalmic Multimedia Art Department) for assistance in figures.

Conflict of interest statements

No conflict for any author.

Financial disclosure

None of the authors have any financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajoy Vincent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincent, A., Shetty, R., Devi, S.A.V. et al. Functional involvement of cone photoreceptors in advanced glaucoma: a multifocal electroretinogram study. Doc Ophthalmol 121, 21–27 (2010). https://doi.org/10.1007/s10633-010-9227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-010-9227-0

Keywords

Navigation