Skip to main content

Advertisement

Log in

Correlation between functional and anatomical assessments by multifocal electroretinography and optical coherence tomography in central serous chorioretinopathy

  • Original research article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

To evaluate the correlation between functional and anatomical assessments with multifocal electroretinography (mfERG) and optical coherence tomography (OCT) in patients with acute central serous chorioretinopathy (CSC). Thirty-four eyes of 34 patients with acute CSC underwent mfERG and OCT examinations. First-order mfERG N1 and P1 response amplitudes and latencies were analyzed. OCT parameters measured included central subretinal fluid (SRF) thickness, central retinal thickness, total central foveal thickness, vertical, and horizontal diameters of SRF, and macular volume. Correlation analyses were performed between best-corrected visual acuity (BCVA), mfERG parameters, and OCT measurements. Correlation analysis showed that logMAR BCVA was significantly correlated with mfERG N1 amplitudes of rings 1 and 2 (P = 0.006), N1 latency of ring 4 (P = 0.012), and P1 latency of ring 1 (P = 0.036). No significant correlation was observed between logMAR BCVA and any of the OCT measurements. For the correlation between mfERG parameters and OCT measurements, mfERG N1 and P1 latencies of the paracentral rings were significantly correlated with the central SRF thickness (P ≤ 0.024), diameters of the SRF (P ≤ 0.018), and macular volume (P ≤ 0.030). MfERG responses but not OCT measurements correlated with logMAR BCVA in patients with acute CSC. The amount of SRF nonetheless correlated with the mfERG N1 and P1 latencies of the paracentral rings, suggesting that impairment in the conduction of electrical responses in the paracentral macula is proportional to the severity of serous macular detachment in CSC. MfERG and OCT can complement each other in the functional and anatomical assessments in CSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gass JD (1967) Pathogenesis of disciform detachment of neuroepithelium: II. Idiopathic serous chorioretinopathy. Am J Ophthalmol 63:587–615

    Google Scholar 

  2. Piccolino FC, De La Longrais RR, Ravera G, Eandi CM, Ventre L, Adollahi A, Manea M (2005) The foveal photoreceptor layer and visual acuity loss in central serous chorioretinopathy. Am J Ophthalmol 139:87–99

    Article  PubMed  Google Scholar 

  3. Iida T, Hagimura N, Sato T, Kishi S (2000) Evaluation of central serous chorioretinopathy with optical coherence tomography. Am J Ophthalmol 129:16–20

    Article  CAS  PubMed  Google Scholar 

  4. Hee MR, Puliafito CA, Wong C, Reichel E, Duker JS, Schuman JS, Swanson EA, Fujimoto JG (1995) Optical coherence tomography of central serous chorioretinopathy. Am J Ophthalmol 120:65–74

    CAS  PubMed  Google Scholar 

  5. Montero JA, Ruiz-Moreno JM (2005) Optical coherence tomography characterisation of idiopathic central serous chorioretinopathy. Br J Ophthalmol 89:562–564

    Article  CAS  PubMed  Google Scholar 

  6. Nakajima H, Mizota A, Tanaka M (2007) Technical note: method for estimating volume of subretinal fluid in cases of localized retinal detachment by OCT ophthalmoscopy. Ophthalmic Physiol Opt 27:512–517

    Article  PubMed  Google Scholar 

  7. Lai TY, Chan WM, Lai RY, Ngai JW, Li H, Lam DS (2007) The clinical applications of multifocal electroretinography: a systematic review. Surv Ophthalmol 52:61–96

    Article  PubMed  Google Scholar 

  8. Lai TY, Lai RY, Ngai JW, Chan WM, Li H, Lam DS (2008) First and second-order kernel multifocal electroretinography abnormalities in acute central serous chorioretinopathy. Doc Ophthalmol 116:29–40

    Article  PubMed  Google Scholar 

  9. Huang S, Wu D, Jiang F, Wu L, Liang J, Luo G, Wen F, Ma J (2002) The multifocal electroretinogram in central serous chorioretinopathy. Ophthalmic Physiol Opt 22:244–247

    Article  PubMed  Google Scholar 

  10. Vajaranant TS, Szlyk JP, Fishman GA, Gieser JP, Seiple W (2002) Localized retinal dysfunction in central serous chorioretinopathy as measured using the multifocal electroretinogram. Ophthalmology 109:1243–1250

    Article  PubMed  Google Scholar 

  11. Zhang W, Zhao K (2003) Multifocal electroretinography in central serous chorio-retinopathy and assessment of the reproducibility of the multifocal electroretinography. Doc Ophthalmol 106:209–213

    Article  PubMed  Google Scholar 

  12. Suzuki K, Hasegawa S, Usui T, Ichibe M, Takada R, Takagi M, Abe H (2000) Multifocal electroretinogram in central serous chorioretinopathy. Jpn J Ophthalmol 44:571

    Article  PubMed  Google Scholar 

  13. Chappelow AV, Marmor MF (2000) Multifocal electroretinogram abnormalities persist following resolution of central serous chorioretinopathy. Arch Ophthalmol 118:1211–1215

    CAS  PubMed  Google Scholar 

  14. Marmor MF, Tan F (1999) Central serous chorioretinopathy: bilateral multifocal electroretinographic abnormalities. Arch Ophthalmol 117:184–188

    CAS  PubMed  Google Scholar 

  15. Moschos M, Brouzas D, Koutsandrea C, Stefanos B, Loukianou H, Papantonis F, Moschos M (2007) Assessment of central serous chorioretinopathy by optical coherence tomography and multifocal electroretinography. Ophthalmologica 221:292–298

    Article  PubMed  Google Scholar 

  16. Sutter EE, Tran D (1992) The field topography of ERG component in man. Part 1. The photopic luminance response. Vision Res 32:433–466

    Article  CAS  PubMed  Google Scholar 

  17. Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Palmowski-Wolfe AM (2008) ISCEV guidelines for clinical multifocal electroretinography (2007 edition). Doc Ophthalmol 116:1–11

    Article  PubMed  Google Scholar 

  18. Costa RA, Calucci D, Skaf M, Cardillo JA, Castro JC, Melo LA Jr, Martins MC, Kaiser PK (2004) Optical coherence tomography 3: automatic delineation of the outer neural retinal boundary and its influence on retinal thickness measurements. Invest Ophthalmol Vis Sci 45:2399–2406

    Article  PubMed  Google Scholar 

  19. Apostolopoulos MN, Koutsandrea CN, Moschos MN, Alonistiotis DA, Papaspyrou AE, Mallias JS, Kyriaki TE, Theodossiadis PG, Theodossiadis GP (2002) Evaluation of successful macular hole surgery by optical coherence tomography and multifocal electroretinography. Am J Ophthalmol 134:667–674

    Article  PubMed  Google Scholar 

  20. Li D, Horiguchi M, Kishi S (2004) Tomographic and multifocal electroretinographic features of idiopathic epimacular membranes. Arch Ophthalmol 122:1462–1467

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Y. Y. Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yip, Y.W.Y., Ngai, J.W.S., Fok, A.C.T. et al. Correlation between functional and anatomical assessments by multifocal electroretinography and optical coherence tomography in central serous chorioretinopathy. Doc Ophthalmol 120, 193–200 (2010). https://doi.org/10.1007/s10633-010-9213-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-010-9213-6

Keywords

Navigation