Skip to main content

Advertisement

Log in

Comparison of the effects of three different combinations of general anesthetics on the electroretinogram of dogs

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

The objective of this study is to compare the effects of three different anesthetic combinations on the electroretinogram in the same animals under similar laboratory conditions. Thiopental–isoflurane (TI), medetomidine–ketamine (MK), and xylazine–ketamine (XK) were used on each of 12 healthy miniature schnauzer dogs (MS) with a period of at least 3 weeks in between subsequent anesthesia protocols, using the Dog Standard Protocol. The scotopic ERGs consisted of scotopic low stimulus strength (S) responses designated S1, S2, S3, S4, and S5, at 1, 5, 10, 15, and 20 min after dark adaptation, respectively, and scotopic standard stimulus strength (S-ST) responses. The photopic ERGs consisted of a photopic single flash (P) response and 31 Hz flicker (P-FL) responses. For S-ST (2.5 cd s/m2), the amplitude of the a-wave using TI was significantly lower than that using MK (adjusted P = 0.05) and XK (adjusted P = 0.03), and the implicit time of the a-wave was significantly shorter than that using MK (adjusted P = 0.04). For P (2.5 cd s/m2), the amplitude of the b-wave using XK was significantly higher than that using MK (adjusted P = 0.01). The implicit times of the b-wave using TI was significantly longer and shorter than that of MK for S1, S2 and P-FL and for S4 and S-ST, respectively, and than that of XK for S2 and P-FL and for S5 and S-ST, respectively. The results of the present study showed that TI affected both the amplitude and the implicit time of the a-wave for S-ST and the implicit time of the b-wave relatively more so than was the case when using XK or MK. Therefore, it appears that either XK or MK could be advantageous to use rather than TI for clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

cd:

Candela

ECVO:

European College of Veterinary Ophthalmologists

ERG:

Electroretinography

IM:

Intramuscular injection

TI:

Thiopental–isoflurane

MK:

Medetomidine–ketamine

MoM:

Multiple of the medians

MS:

Miniature schnauzer dogs

P:

Photopic single flash

P-FL:

31 Hz flicker

S:

Scotopic low stimulus strength

SC:

Subcutaneous injection

IV:

Intravenous injection

S-ST:

Scotopic standard stimulus strength

XK:

Xylazine–ketamine

References

  1. Ofri R (2002) Clinical electrophysiology in veterinary ophthalmology—the past, present and future. Doc Ophthalmol 104:5–16. doi:10.1023/A:1014463514302

    Article  PubMed  Google Scholar 

  2. Vaegan NK (2008) Amax to scotopic Imax diagnoses feline hereditary rod cone degeneration more efficiently than any other combination of long protocol electroretinogram parameters. Doc Ophthalmol 117:1–12. doi:10.1007/s10633-007-9096-3

    Article  PubMed  CAS  Google Scholar 

  3. Ropstad EO, Bjerkas E, Narfström K (2007) Electroretinographic findings in the standard wire haired dachshund with inherited early onset cone-rod dystrophy. Doc Ophthalmol 114:27–36. doi:10.1007/s10633-006-9035-8

    Article  PubMed  Google Scholar 

  4. Acland GM (1988) Diagnosis and differentiation of retinal diseases in small animals by electroretinography. Semin Vet Med Surg (Small Anim) 3:15–27

    CAS  Google Scholar 

  5. Maehara S, Itoh N, Wakaiki S et al (2007) The effects of cataract stage, lens-induced uveitis and cataract removal on ERG in dogs with cataract. Vet Ophthalmol 10:308–312. doi:10.1111/j.1463-5224.2007.00559.x

    Article  PubMed  Google Scholar 

  6. Messias A, Gekeler F, Wegener A et al (2008) Retinal safety of a new fluoroquinolone, pradofloxacin, in cats: assessment with electroretinography. Doc Ophthalmol 116:177–191. doi:10.1007/s10633-007-9081-x

    Article  PubMed  Google Scholar 

  7. Woodward WR, Choi D, Grose J et al (2007) Isoflurane is an effective alternative to ketamine/xylazine/acepromazine as an anesthetic agent for the mouse electroretinogram. Doc Ophthalmol 115:187–201. doi:10.1007/s10633-007-9079-4

    Article  PubMed  Google Scholar 

  8. Tremblay F, Parkinson JE (2003) Alteration of electroretinographic recordings when performed under sedation or halogenate anesthesia in a pediatric population. Doc Ophthalmol 107:271–279. doi:10.1023/B:DOOP.0000005336.08147.fc

    Article  PubMed  Google Scholar 

  9. Kommonen B (1988) The DC-recorded dog electroretinogram in ketamine–medetomidine anaesthesia. Acta Vet Scand 29:35–41

    PubMed  CAS  Google Scholar 

  10. Kommonen B, Karhunen U, Raitta C (1988) Effects of thiopentone halothane-nitrous oxide anaesthesia compared to ketamine–xylazine anaesthesia on the DC recorded dog electroretinogram. Acta Vet Scand 29:23–33

    PubMed  CAS  Google Scholar 

  11. Chaudhary V, Hansen R, Lindgren H et al (2003) Effects of telazol and nembutal on retinal responses. Doc Ophthalmol 107:45–51. doi:10.1023/A:1024444113700

    Article  PubMed  Google Scholar 

  12. Knave B, Persson HE (1974) The effect of barbiturate on retinal functions. I. Effects on the conventional electroretinogram of the sheep eye. Acta Physiol Scand 91:53–60. doi:10.1111/j.1748-1716.1974.tb05656.x

    Article  PubMed  CAS  Google Scholar 

  13. Knave B, Persson HE, Nilsson SE (1974) The effect of barbiturate on retinal functions. II. Effects on the C-wave of the electroretinogram and the standing potential of the sheep eye. Acta Physiol Scand 91:180–186. doi:10.1111/j.1748-1716.1974.tb05674.x

    Article  PubMed  CAS  Google Scholar 

  14. Kommonen B, Hyvatti E, Dawson WW (2007) Propofol modulates inner retina function in beagles. Vet Ophthalmol 10:76–80. doi:10.1111/j.1463-5224.2007.00512.x

    Article  PubMed  CAS  Google Scholar 

  15. Narfström K (2006) Electroretinographic testing in larger animals. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision, 2nd edn. The MIT press, Cambridge, pp 923–933

    Google Scholar 

  16. Acland GM, Forte S, Aguirre G (1981) Halothane effect on the canine electroretinogram. 12th Annual Meeting of the American College Veterinary Ophthalmologists, pp 66–83

  17. Jones RD, Brenneke CJ, Hoss HE et al (1994) An electroretinogram protocol for toxicological screening in the canine model. Toxicol Lett 70:223–234. doi:10.1016/0378-4274(94)90166-X

    Article  PubMed  CAS  Google Scholar 

  18. Yanase J, Ogawa H (1997) Effects of halothane and sevoflurane on the electroretinogram of dogs. Am J Vet Res 58:904–909

    PubMed  CAS  Google Scholar 

  19. Narfström K, Ekesten B, Rosolen SG et al (2002) Guidelines for clinical electroretinography in the dog. Doc Ophthalmol 105:83–92. doi:10.1023/A:1020524305726

    Article  PubMed  Google Scholar 

  20. Palomaki GE, Neveux LM (2001) Using multiples of the median to normalize serum protein measurements. Clin Chem Lab Med 39:1137–1145. doi:10.1515/CCLM.2001.180

    Article  PubMed  CAS  Google Scholar 

  21. Kommonen B, Raitta C (1987) Electroretinography in Labrador retrievers given ketamine–xylazine anesthesia. Am J Vet Res 48:1325–1331

    PubMed  CAS  Google Scholar 

  22. Rosolen SG, Rigaudiere F, Lachapelle P (2002) A practical method to obtain reproducible binocular electroretinograms in dogs. Doc Ophthalmol 105:93–103. doi:10.1023/A:1020539217538

    Article  PubMed  Google Scholar 

  23. Marmor MF, Holder GE, Seeliger MW et al (2004) Standard for clinical electroretinography (2004 update). Doc Ophthalmol 108:107–114. doi:10.1023/B:DOOP.0000036793.44912.45

    Article  PubMed  Google Scholar 

  24. Lalonde MR, Chauhan BC, Tremblay F (2006) Retinal ganglion cell activity from the multifocal electroretinogram in pig: optic nerve section, anaesthesia and intravitreal tetrodotoxin. J Physiol 570:325–338

    PubMed  CAS  Google Scholar 

  25. Yang XL (2004) Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol 73:127–150. doi:10.1016/j.pneurobio.2004.04.002

    Article  PubMed  CAS  Google Scholar 

  26. Krasowski MD, Harrison NL (1999) General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci 55:1278–1303. doi:10.1007/s000180050371

    Article  PubMed  CAS  Google Scholar 

  27. Cheng SC, Brunner EA (1981) Effects of anesthetic agents on synaptosomal GABA disposal. Anesthesiology 55:34–40

    Article  PubMed  CAS  Google Scholar 

  28. Cheng SC, Brunner EA (1981) Inhibition of GABA metabolism in rat brain slices by halothane. Anesthesiology 55:26–33

    PubMed  CAS  Google Scholar 

  29. Schlame M, Hemmings HC Jr (1995) Inhibition by volatile anesthetics of endogenous glutamate release from synaptosomes by a presynaptic mechanism. Anesthesiology 82:1406–1416. doi:10.1097/00000542-199506000-00012

    Article  PubMed  CAS  Google Scholar 

  30. Vainio O, Palmu L (1989) Cardiovascular and respiratory effects of medetomidine in dogs and influence of anticholinergics. Acta Vet Scand 30:401–408

    PubMed  CAS  Google Scholar 

  31. Short CE (1991) Effects of anticholinergic treatment on the cardiac and respiratory systems in dogs sedated with medetomidine. Vet Rec 129:310–313

    PubMed  CAS  Google Scholar 

  32. Scheinin H, Virtanen R, MacDonald E et al (1989) Medetomidine—a novel alpha 2-adrenoceptor agonist: a review of its pharmacodynamic effects. Prog Neuropsychopharmacol Biol Psychiatry 13:635–651. doi:10.1016/0278-5846(89)90051-1

    Article  PubMed  CAS  Google Scholar 

  33. Virtanen R (1986) Pharmacology of detomidine and other alpha 2-adrenoceptor agonists in the brain. Acta Vet Scand Suppl 82:35–46

    PubMed  CAS  Google Scholar 

  34. Alibhai HI, Clarke KW, Lee YH et al (1996) Cardiopulmonary effects of combinations of medetomidine hydrochloride and atropine sulphate in dogs. Vet Rec 138:11–13

    PubMed  CAS  Google Scholar 

  35. Ko JC, Fox SM, Mandsager RE (2001) Effects of preemptive atropine administration on incidence of medetomidine-induced bradycardia in dogs. J Am Vet Med Assoc 218:52–58. doi:10.2460/javma.2001.218.52

    Article  PubMed  CAS  Google Scholar 

  36. Brown ET, Umino Y, Loi T et al (2005) Anesthesia can cause sustained hyperglycemia in C57/BL6 J mice. Vis Neurosci 22:615–618. doi:10.1017/S0952523805225105

    Article  PubMed  CAS  Google Scholar 

  37. Sannita WG, Balestra V, Dibon G et al (1993) Spontaneous variations of flash-electroretinogram and retinal oscillatory potential in healthy volunteers are correlated to serum glucose. Clin Vis Sci 8:147–158

    Google Scholar 

  38. Barlow RB, Khan M, Farell B (2003) Metabolic modulation of human visual sensitivity (E-abstract). Invest Ophthalmol Vis Sci 44:2708. doi:10.1167/iovs.02-1054

    Article  Google Scholar 

  39. McRipley MA, Ahmed J, Chen EP et al (1997) Effects of adaptation level and hypoglycemia on function of the cat retina during hypoxemia. Vis Neurosci 14:339–350

    Article  PubMed  CAS  Google Scholar 

  40. Saha JK, Xia J, Grondin JM et al (2005) Acute hyperglycemia induced by ketamine/xylazine anesthesia in rats: mechanisms and implications for preclinical models. Exp Biol Med (Maywood) 230:777–784

    CAS  Google Scholar 

  41. Ambrisko TD, Hikasa Y (2002) Neurohormonal and metabolic effects of medetomidine compared with xylazine in beagle dogs. Can J Vet Res 66:42–49

    PubMed  CAS  Google Scholar 

  42. Hillaire-Buys D, Gross R, Blayac JP et al (1985) Effects of alpha-adrenoceptor agonists and antagonists on insulin secreting cells and pancreatic blood vessels: comparative study. Eur J Pharmacol 117:253–257. doi:10.1016/0014-2999(85)90610-7

    Article  PubMed  CAS  Google Scholar 

  43. Brockman RP (1981) Effect of xylazine on plasma glucose, glucagon and insulin concentrations in sheep. Res Vet Sci 30:383–384

    PubMed  CAS  Google Scholar 

  44. Hsu WH, Hummel SK (1981) Xylazine-induced hyperglycemia in cattle: a possible involvement of alpha 2-adrenergic receptors regulating insulin release. Endocrinology 109:825–829

    Article  PubMed  CAS  Google Scholar 

  45. Benson GJ, Grubb TL, Neff-Davis C et al (2000) Perioperative stress response in the dog: effect of pre-emptive administration of medetomidine. Vet Surg 29:85–91. doi:10.1111/j.1532-950X.2000.00085.x

    Article  PubMed  CAS  Google Scholar 

  46. Yanase J, Ogawa H, Ohtsuka H (1995) Rod and cone components in the dog electroretinogram during and after dark adaptation. J Vet Med Sci 57:877–881

    PubMed  CAS  Google Scholar 

  47. Lam BL (ed) (2005) Clinical recording techniques. In: Electrophysiology of vision: clinical testing and applications. Taylor & Francis Group, Boca Raton, pp 1–64

Download references

Acknowledgments

Supported by the College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Republic of Korea. The authors thank Dr. Youngju Pak for statistical assistance and Howard Wilson for assistance with illustrations and graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Moon Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, M.B., Narfström, K., Park, S.A. et al. Comparison of the effects of three different combinations of general anesthetics on the electroretinogram of dogs. Doc Ophthalmol 119, 79–88 (2009). https://doi.org/10.1007/s10633-009-9173-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-009-9173-x

Keywords

Navigation