Skip to main content
Log in

Signal and noise in P300 recordings to visual stimuli

  • TECHNICAL NOTE
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

The P300 of the event-related potential is typically obtained for infrequent target stimuli that are embedded in a sequence of frequent irrelevant stimuli. The P300 has been suggested as a marker of high-level cognitive processing and might be useful in ophthalmology to confirm the diagnosis of a functional disorder. However, typical P300 measurements require relatively lengthy recording sessions. It would therefore be desirable to minimize the required time and to maximize the signal-to-noise ratio by finding the optimal balance between parameters such as stimulus probability and the number of target trials or the recording time. This is different from previous studies, which assessed the amplitude only. We recorded event-related potentials to visual stimuli using standard oddball paradigms with various target frequencies ranging from 2:1 (target majority) to 1:16 (massive non-target majority). We compared the signal-to-noise ratios for a fixed number of target trials as well as for a fixed total recording time and assessed effects of the immediate stimulus history. As expected, P300 amplitudes depend strongly on target infrequency. This did not reach saturation within the range tested. For a given number of target trials, the signal-to-noise ratio also increases with target infrequency. For a given recording duration, the signal-to-noise ratio is optimal around 1:8. In the 1:4 condition, the signal-to-noise ratio can be improved by excluding trials that were preceded by a target trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Linden DEJ (2005) The P300: where in the brain is it produced and what does it tell us? Neuroscientist 11:563–576

    Article  PubMed  CAS  Google Scholar 

  2. Polich J, Herbst KL (2000) P300 as a clinical assay: rationale, evaluation, and findings. Int J Psychophysiol 38:3–19

    Article  PubMed  CAS  Google Scholar 

  3. Patel SH, Azzam PN (2005) Characterization of N200 and P300: selected studies of the event-related potential. Int J Med Sci 2:147–154

    PubMed  Google Scholar 

  4. Pratap-Chand R, Sinniah M, Salem FA (1988) Cognitive evoked potential (P300): a metric for cerebral concussion. Acta Neurol Scand 78:185–189

    Article  PubMed  CAS  Google Scholar 

  5. Rousseff RT, Tzvetanov P, Atanassova PA, Volkov I, Hristova I (2006) Correlation between cognitive P300 changes and the grade of closed head injury. Electromyogr Clin Neurophysiol 46:275–277

    PubMed  CAS  Google Scholar 

  6. Wang JT, Young GB, Connolly JF (2004) Prognostic value of evoked responses and event-related brain potentials in coma. Can J Neurol Sci 31:438–450

    PubMed  Google Scholar 

  7. Comi G, Leocani L, Locatelli T, Medaglini S, Martinelli V (1999) Electrophysiological investigations in multiple sclerosis dementia. Electroencephalogr Clin Neurophysiol Suppl 50:480–485

    PubMed  CAS  Google Scholar 

  8. Magnano I, Aiello I, Piras MR (2006) Cognitive impairment and neurophysiological correlates in MS. J Neurol Sci 245:117–122

    Article  PubMed  CAS  Google Scholar 

  9. Lorenz J, Kunze K, Bromm B (1998) Differentiation of conversive sensory loss and malingering by P300 in a modified oddball task. Neuroreport 9:187–191

    PubMed  CAS  Google Scholar 

  10. Towle VL, Sutcliffe E, Sokol S (1985) Diagnosing functional visual deficits with the P300 component of the visual evoked potential. Arch Ophthalmol 103:47–50

    PubMed  CAS  Google Scholar 

  11. Verleger R (1997) On the utility of P3 latency as an index of mental chronometry. Psychophysiology 34:131–156

    Article  PubMed  CAS  Google Scholar 

  12. Soltani M, Knight RT (2000) Neural origins of the P300. Crit Rev Neurobiol 14:199–224

    PubMed  CAS  Google Scholar 

  13. Polich J (2003) Theoretical overview of P3a and P3b. In: Polich J (ed) Detection of change: event-related potential and fMRI findings. Kluwer Academic Press, Boston, pp 83–98

    Google Scholar 

  14. Polich J (2004) Neuropsychology of P3a and P3b: a theoretical overview. In: Moore NC, Arikan K (eds) Brainwaves and mind: recent developments. Kjellberg, Wheaton, IL, pp 15–29

    Google Scholar 

  15. Katayama J, Polich J (1996) P300, probability, and the three-tone paradigm. Electroenceph Clin Neurophysiol 100:555–562

    Article  PubMed  CAS  Google Scholar 

  16. Picton TW (1992) The P300 wave of the human event-related potential. J Clin Neurophysiol 9:456–479

    Article  PubMed  CAS  Google Scholar 

  17. Ji J, Porjesz B, Begleiter H, Chorlian D (1999) P300: the similarities and differences in the scalp distribution of visual and auditory modality. Brain Topogr 11:315–327

    Article  PubMed  CAS  Google Scholar 

  18. Johnson R Jr (1986) A triarchic model of P300 amplitude. Psychophysiology 23:367–384

    Article  PubMed  Google Scholar 

  19. Polich J, Margala C (1997) P300 and probability: comparison of oddball and single-stimulus paradigms. Int J Psychophysiol 25:169–176

    Article  PubMed  CAS  Google Scholar 

  20. Duncan-Johnson CC, Donchin E (1977) On quantifying surprise: the variation of event-related potentials with subjective probability. Psychophysiology 14:456–467

    Article  PubMed  CAS  Google Scholar 

  21. Rosenfeld JP, Biroschak JR, Kleschen MJ, Smith KM (2005) Subjective and objective probability effects on P300 amplitude revisited. Psychophysiology 42:356–359

    Article  PubMed  Google Scholar 

  22. Gonsalvez CL, Polich J (2002) P300 amplitude is determined by target-to-target interval. Psychophysiology 39:388–396

    Article  PubMed  Google Scholar 

  23. Golob EJ, Starr A (2000) Effects of stimulus sequence on event-related potentials and reaction time during target detection in Alzheimer’s disease. Clin Neurophysiol 111:1438–1449

    Article  PubMed  CAS  Google Scholar 

  24. Holm A, Ranta-aho PO, Sallinen M, Karjalainen PA, Muller K (2006) Relationship of P300 single-trial responses with reaction time and preceding stimulus sequence. Int J Psychophysiol 61:244–252

    Article  PubMed  Google Scholar 

  25. Potts GF, Patel SH, Azzam PN (2004) Impact of instructed relevance on the visual ERP. Int J Psychophysiol 52:197–209

    Article  PubMed  Google Scholar 

  26. Williams LM, Simms E, Clark CR, Paul RH, Rowe D, Gordon E (2005) The test–retest reliability of a standardized neurocognitive and neurophysiological test battery: “Neuromarker”. Int J Neurosci 115:1605–1630

    Article  PubMed  CAS  Google Scholar 

  27. Ravden D, Polich J (1999) On P300 measurement stability: habituation, intra-trial block variation, and ultradian rhythms. Biol Psychol 51:59–76

    Article  PubMed  CAS  Google Scholar 

  28. Ravden D, Polich J (1998) Habituation of P300 from visual stimuli. Int J Psychophysiol 30:359–365

    Article  PubMed  CAS  Google Scholar 

  29. Kinoshita S, Maeda H, Nakamura J, Kodama E, Morita K (1995) Reliability of the probability effect on event-related potentials during repeated testing. Kurume Med J 42:199–210

    PubMed  CAS  Google Scholar 

  30. van Beijsterveldt CEM, van Baal GCM (2002) Twin and family studies of the human electroencephalogram: a review and a meta-analysis. Biol Psychol 61:111–138

    Article  PubMed  Google Scholar 

  31. Ahlfors SP, Ilmoniemi RJ, Portin K (1993) The effect of stimulation rate on the signal-to-noise ratio of evoked responses. Electroenceph Clin Neurophysiol 88:339–342

    Article  PubMed  CAS  Google Scholar 

  32. Stecker MM (2000) Generalized averaging and noise levels in evoked responses. Comput Biol Med 30:247–265

    Article  PubMed  CAS  Google Scholar 

  33. Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523

    Article  PubMed  CAS  Google Scholar 

  34. American Clinical Neurophysiology Society (2006) Guideline 5: guidelines for standard electrode position nomenclature. J Clin Neurophysiol 23:107–110

    Article  Google Scholar 

  35. Murphy TI, Segalowitz SJ (2004) Eliminating the P300 rebound in short oddball paradigms. Int J Psychophysiol 53:233–238

    Article  PubMed  Google Scholar 

  36. Taylor JR (1997) An introduction to error analysis: the study of uncertainties in physical measurements, 2nd edn. University Science Books, Sausalito CA

    Google Scholar 

  37. Silverman MP, Strange W, Lipscombe TC (2004) The distribution of composite measurements: how to be certain of the uncertainties in what we measure. Am J Phys 72:1068–1081

    Article  CAS  Google Scholar 

  38. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Statist 6:65–70

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Deutsche Forschungsgemeinschaft (BA 877/18-1). We are grateful to our subjects for their participation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven P. Heinrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrich, S.P., Bach, M. Signal and noise in P300 recordings to visual stimuli. Doc Ophthalmol 117, 73–83 (2008). https://doi.org/10.1007/s10633-007-9107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-007-9107-4

Keywords

Navigation