Skip to main content

Phototoxic effects of commercial photographic flash lamp on rat eyes



To determine whether exposure of the cornea and retina of rats to flashes from a commercial photographic flash lamp is phototoxic.


Sprague–Dawley rats were exposed to 10, 100, or 1,000 flashes of the OPTICAM 16M photographic flash lamp (Fujikoeki, Japan) placed 0.1, 1, or 3 m from the eyes. Corneal damage was assessed by a fluorescein staining score, and the retinal damage by eletroretinography (ERG) and histology before and 24 h after exposure.


Exposure of the eyes to 1,000 flashes at 0.1 m increased the fluorescein staining score significantly (P = 0.009, the Mann–Whitney test). Scanning electron microscopy (SEM) of the cornea showed a detachment of the epithelial cells from the surface after this exposure. The amplitude of the a-wave was decreased significantly by 23.0% (P = 0.026) of the amplitude before the exposure, and the b-wave by 19.7% (P = 0.0478) following 1,000 flashes at 0.1 m but not by the other exposures. TUNEL-positive cells were present in the outer nuclear layer only after the extreme exposure, but no significant decrease in retinal thickness was seen under any condition. The fluorescein staining score and ERGs recovered to control levels within 1 week.


Light exposure to a photographic flash lamp does not induce damage to the cornea and retina except when they are exposed to 1,000 flashes at 0.1 m.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Wasowicz M, Morice C, Ferrari P, et al (2002) Long-term effects of light damage on the retina of albino and pigmented rats. Invest Ophthalmol Vis Sci 43:813–820

    PubMed  Google Scholar 

  2. 2.

    Zrenner E (1990) Light-induced damage to the eye. Fortschr Ophthalmol 87(suppl):S41–S51

    PubMed  Google Scholar 

  3. 3.

    Roberts JE (2001) Ocular phototoxicity. J Photochem Photobiol B 64:136–143

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Podskochy A, Gan L, Fagerholm P (2000) Apoptosis in UV-exposed rabbit corneas. Cornea 19:99–103

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Jaffe GJ, Irvine AR, Wood IS, et al (1988) Retinal phototoxicity from the operating microscope. The role of inspired oxygen. Ophthalmology 95:1130–1141

    PubMed  CAS  Google Scholar 

  6. 6.

    Tso MOM, Woodford BJ (1983) Effect of photic injury on the retinal tissues. Ophthalmology 90: 952–963

    PubMed  CAS  Google Scholar 

  7. 7.

    Ross WH (1984) Light-induced maculopathy. Am J Ophthalmol 98:488–493

    PubMed  CAS  Google Scholar 

  8. 8.

    van den Bissen PR, Berenschot T, Verdaasdonk RM, et al (2000) Endoillumination during vitrectomy and phototoxicity thresholds. Br J Ophthalmol 84: 1372–1375

    Article  Google Scholar 

  9. 9.

    Zamir E, Kaiserman I, Chowers I (1999) Laser pointer maculopathy. Am J Ophthalmol 127:728–729

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Noell WK (1980) There are different kinds of retinal light damage in the rat. In: Williams TP, Baker BN (eds) The effect of constant light on visual processes. Plenum Press, New York, pp 3–28

    Google Scholar 

  11. 11.

    Rapp LM, Williams TP (1980) A parametric study of retinal light damage in albino and pigmented rats. In: Williams TP, Baker BN (eds) The effect of constant light on visual processes. Plenum Press, New York, pp 135–159

    Google Scholar 

  12. 12.

    Noell WK, Walker VS, Kang BS, Berman S (1966) Retinal damage by light in rats. Invest Ophthalmol 5:450–473

    PubMed  CAS  Google Scholar 

  13. 13.

    Ham WT Jr, Meuller HA, Slinery DH (1976) Retinal sensitivity to damage from short wavelength light. Nature 260:153–155

    PubMed  Article  Google Scholar 

  14. 14.

    Mori K, Yoneya S, Hayashi N, Abe T (1997) Fundus hypothermia inhibits retinal damage induced by visible blue light. Nippon Ganka Gakkai Zasshi 101:633–638

    PubMed  CAS  Google Scholar 

  15. 15.

    Organisciak DT, Darrow RM, Nell WK, Blanks JC (1995) Hyperthermia accelerates retinal light damage in rats. Invest Ophthalmol Vis Sci 36:997–1008

    PubMed  CAS  Google Scholar 

  16. 16.

    Barbe MF, Tytell M, Gower DJ, Welch WJ (1988) Hyperthermia protects against light damage in the rat retina. Science 241:1817–1820

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Tytell M, Barbe MF, Brown IR (1994) Induction of heat shock (stress) protein 70 and its mRNA in the normal and light-damaged rat retina after whole body hyperthermia. J Neurosci Res 38:19–31

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Sugawara T (2002) Electroretinogram changes in eyes with light damage to the retina. Folia Ophthalmol Jpn 53:609–615

    Google Scholar 

  19. 19.

    Ohuchi T, Machida S, Tazawa Y (1994) Changes in ERG a, b and c-waves by light-induced retinal damage. Folia Ophthalmol Jpn 45:952–955

    Google Scholar 

  20. 20.

    Kartz KE, Newsome DA, May JG (1990) Changes in ERG amplitude following laser induced damage to the primate retina. Curr Eye Res 9:435–444

    Google Scholar 

  21. 21.

    Sugawara T, Sieving PA, Bush RA (2000) Quantitative relationship of the scotopic and photopic ERG to photoreceptor cell loss in light damaged rats. Exp Eye Res 70:693–705

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Takahashi T, Machida S, Masuda T, et al (2005) Functional changes in rod and cone pathways after photoreceptor loss in light-damaged rats. Curr Eye Res 30:703–713

    PubMed  Article  Google Scholar 

  23. 23.

    Kozaki J, Takeuchi M, Takahashi K, et al (1994) Light-induced retinal damage in pigmented rabbit-1 histopathological observations of the natural course of healing. Nippon Ganka Gakkai Zasshi 98:738–748

    PubMed  CAS  Google Scholar 

  24. 24.

    Ham WT Jr, Mueller HA, Ruffolo JJ Jr, et al (1982) Action specrum for retinal injury from near-ultraviolet radiation in the aphakic monkey. Am J Ophthalmol 93:229–306

    Google Scholar 

  25. 25.

    Busch EM, Gorgels TG, van Norren D (1999) Temporal sequence of changes in rat retina after UV-A and blue light exposure. Vision Res 39:1233–1247

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Ham WT Jr, Mueller HA, Ruffolo JJ Jr, et al (1984) Basic mechanisms underlying the production of photochemical lesions in the mammalian retina. Curr Eye Res 26:165–174

    Google Scholar 

  27. 27.

    Wang L, Lam TT, Lam KW, Tso MO (1984) Correelation of phospholipids hydroperoxidase glutathione peroxidase activity to the sensitivity of rat retinas to photic injury. Ophthalmic Res 26:60–64

    Article  Google Scholar 

  28. 28.

    Aonuma H, Yamazaki R, Watanabe I (1999) Retinal cell death by light damage. Jpn J Ophthalmol 43:171–179

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Shahinfar S, Edward DP, Tso MO (1991) A pathologic study of photoreceptor cell death in retinal photic injury. Curr Eye Res 10:47–59

    PubMed  CAS  Google Scholar 

Download references


This study was supported by the research grant by Fuji Film Corporation, Tokyo, Japan. The authors would like to acknowledge the technical assistance of T. Nagai with electron microscopy.

Author information



Corresponding author

Correspondence to Makoto Inoue.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Inoue, M., Shinoda, K., Ohde, H. et al. Phototoxic effects of commercial photographic flash lamp on rat eyes. Doc Ophthalmol 113, 155 (2006).

Download citation


  • Cornea
  • Electroretinograms
  • Photographic flash lamp
  • Phototoxicity
  • Retina