Skip to main content
Log in

Lengths of divisible codes: the missing cases

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A linear code C over \({\mathbb {F}}_q\) is called \(\Delta \)-divisible if the Hamming weights \({\text {wt}}(c)\) of all codewords \(c \in C\) are divisible by \(\Delta \). The possible effective lengths of \(q^r\)-divisible codes have been completely characterized for each prime power q and each non-negative integer r in Kiermaier and Kurz (IEEE Trans Inf Theory 66(7):4051–4060, 2020). The study of \(\Delta \)-divisible codes was initiated by Harold Ward (Archiv der Mathematik 36(1):485–494, 1981). If t divides \(\Delta \) but is coprime to q, then each \(\Delta \)-divisible code C over \({\mathbb {F}}_q\) is the t-fold repetition of a \(\Delta /t\)-divisible code. Here we determine the possible effective lengths of \(p^r\)-divisible codes over finite fields of characteristic p, where \(r\in {\mathbb {N}}\) but \(p^r\) is not a power of the field size, i.e., the missing cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adriaensen S.: A note on small weight codewords of projective geometric codes and on the smallest sets of even type. SIAM J. Discret. Math. 37(3), 2072–2087 (2023).

    Article  MathSciNet  Google Scholar 

  2. Ball S., Blokhuis A., Gács A., Sziklai P., Weiner Z.: On linear codes whose weights and length have a common divisor. Adv. Math. 211(1), 94–104 (2007).

    Article  MathSciNet  Google Scholar 

  3. Bouyukliev I., Bouyuklieva S., Kurz S.: Computer classification of linear codes. IEEE Trans. Inf. Theory 67(12), 7807–7814 (2021).

    Article  MathSciNet  Google Scholar 

  4. Calderbank R., Kantor W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18(2), 97–122 (1986).

    Article  MathSciNet  Google Scholar 

  5. Denniston R.H.F.: Some maximal arcs in finite projective planes. J. Comb. Theory 6(3), 317–319 (1969).

    Article  MathSciNet  Google Scholar 

  6. Heinlein D., Honold T., Kiermaier M., Kurz S., Wassermann A.: Projective divisible binary codes. In: The Tenth International Workshop on Coding and Cryptography 2017: WCC Proceedings. IEEE Information Theory Society, Saint-Petersburg, September 2017. https://eref.uni-bayreuth.de/40887/.

  7. Hirschfeld J.W.P., Hubaut X.: Sets of even type in \(\operatorname{PG}(3,4)\), alias the binary \((85, 24)\) projective geometry code. J. Comb. Theory Ser. A 29(1), 101–112 (1980).

    Article  Google Scholar 

  8. Honold T., Kiermaier M., Kurz S.: Johnson type bounds for mixed dimension subspace codes. Electron. J. Comb. 26(3), (2019). https://doi.org/10.37236/8188.

  9. Honold T., Kiermaier M., Kurz S.: Partial spreads and vector space partitions. In: Network Coding and Subspace Designs, pp. 131–170. Springer (2018).

  10. Key J.D., de Resmini M.J.: Small sets of even type and codewords. J. Geom. 61, 83–104 (1998).

    Article  MathSciNet  Google Scholar 

  11. Kiermaier M., Kurz S.: On the lengths of divisible codes. IEEE Trans. Inf. Theory 66(7), 4051–4060 (2020).

    Article  MathSciNet  Google Scholar 

  12. Korchmáros G., Mazzocca F.: On \((q+ t)\)-arcs of type \((0, 2, t)\) in a Desarguesian plane of order \(q\). In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 108, pp. 445–459. Cambridge University Press (1990).

  13. Körner T., Kurz S.: Lengths of divisible codes with restricted column multiplicities. Adv. Math. Commun. 18(2), 505–534 (2024).

    Article  MathSciNet  Google Scholar 

  14. Kurz S.: Divisible codes. arXiv:2112.11763 (2021).

  15. Kurz S.: No projective \(16\)-divisible binary linear code of length \(131\) exists. IEEE Commun. Lett. 25(1), 38–40 (2020).

    Article  Google Scholar 

  16. Kurz S.: Vector space partitions of \(\operatorname{GF}(2)^8\). Serdica J. Comput. 16(2), 71–100 (2022).

    Article  MathSciNet  Google Scholar 

  17. Limbupasiriporn J.: Small sets of even type in finite projective planes of even order. J. Geom. 98, 139–149 (2010).

    Article  MathSciNet  Google Scholar 

  18. Ong D.C., Ponomarenko V.: The Frobenius number of geometric sequences. Integers Electron. J. Comb. Numb. Theory 8(1), A33 (2008).

    MathSciNet  Google Scholar 

  19. Sherman B.: On sets with only odd secants in geometries over \(\operatorname{GF}(4)\). J. Lond. Math. Soc. 2(3), 539–551 (1983).

    Article  MathSciNet  Google Scholar 

  20. Sylvester J.J.: On subvariants, i.e. semi-invariants to binary quantics of an unlimited order. Am. J. Math. 5(1), 79–136 (1882).

    Article  MathSciNet  Google Scholar 

  21. Tanaka T., Maruta T.: Classification of the odd sets in \(\operatorname{PG}(4,4)\) and its application to coding theory. Appl. Algebra Eng. Commun. Comput. 24(3–4), 179–196 (2013).

    Article  MathSciNet  Google Scholar 

  22. Ward H.N.: Divisible codes. Archiv der Mathematik 36(1), 485–494 (1981).

    Article  MathSciNet  Google Scholar 

  23. Ward H.N.: Divisibility of codes meeting the Griesmer bound. J. Comb. Theory Ser. A 83(1), 79–93 (1998).

    Article  MathSciNet  Google Scholar 

  24. Ward H.N.: Divisible codes—a survey. Serdica Math. J. 27(4), 263–278 (2001).

    MathSciNet  Google Scholar 

  25. Weiner Z., Szőnyi T.: On the stability of sets of even type. Adv. Math. 267, 381–394 (2014).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Kurz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by L. Storme.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurz, S. Lengths of divisible codes: the missing cases. Des. Codes Cryptogr. (2024). https://doi.org/10.1007/s10623-024-01398-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10623-024-01398-7

Keywords

Mathematics Subject Classification

Navigation