Skip to main content
Log in

Small weight codewords of projective geometric codes II

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The \(p\)-ary linear code \(\mathcal {C}_{k}\!\left( n,q\right) \) is defined as the row space of the incidence matrix \(A\) of \(k\)-spaces and points of \(\textrm{PG}\!\left( n,q\right) \). It is known that if \(q\) is square, a codeword of weight \(q^k\sqrt{q}+\mathcal {O}\!\left( q^{k-1}\right) \) exists that cannot be written as a linear combination of at most \(\sqrt{q}\) rows of \(A\). Over the past few decades, researchers have put a lot of effort towards proving that any codeword of smaller weight does meet this property. We show that if \(q\geqslant 32\) is a composite prime power, every codeword of \(\mathcal {C}_{k}\!\left( n,q\right) \) up to weight \(\mathcal {O}\!\left( q^k\sqrt{q}\right) \) is a linear combination of at most \(\sqrt{q}\) rows of \(A\). We also generalise this result to the codes \(\mathcal {C}_{j,k}\!\left( n,q\right) \), which are defined as the \(p\)-ary row span of the incidence matrix of k-spaces and j-spaces, \(j < k\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. For any set \(\mathcal {S}\) of points in \(\textrm{PG}\!\left( n,q\right) \), we can define its characteristic function \(v_\mathcal {S}\) as the function that maps the points of \(\mathcal {S}\) to 1, and the other points of \(\textrm{PG}\!\left( n,q\right) \) to 0.

References

  1. Adriaensen S.: A note on small weight codewords of projective geometric codes and on the smallest sets of even type. SIAM J. Discret. Math. 37(3), 2072–2087 (2023).

    Article  MathSciNet  Google Scholar 

  2. Adriaensen S., Denaux L.: Small weight codewords of projective geometric codes. J. Comb. Theory Ser. A 180, Paper No. 105395, 34 (2021).

    Article  MathSciNet  Google Scholar 

  3. Adriaensen S., Denaux L., Storme L., Weiner Z.: Small weight code words arising from the incidence of points and hyperplanes in PG\((n, q)\). Des. Codes Cryptogr. 88(4), 771–788 (2020).

    Article  MathSciNet  Google Scholar 

  4. Assmus E.F. Jr., Key J.D.: Designs and Their Codes, Volume 103 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1992).

    Book  Google Scholar 

  5. Bagchi B.: On characterizing designs by their codes. In: Buildings, Finite Geometries and Groups, Volume 10 of Springer Proceedings in Mathematics, pp. 1–14. Springer, New York (2012).

  6. Bagchi B.: The fourth smallest hamming weight in the code of the projective plane over \(\mathbb{Z}/p\mathbb{Z}\). arXiv:1712.07391 (2017).

  7. Bagchi B., Inamdar S.P.: Projective geometric codes. J. Comb. Theory Ser. A 99(1), 128–142 (2002).

    Article  MathSciNet  Google Scholar 

  8. Bartoli D., Denaux L.: Minimal codewords arising from the incidence of points and hyperplanes in projective spaces. Adv. Math. Commun. 17(1), 56–77 (2023).

    Article  MathSciNet  Google Scholar 

  9. Blokhuis A., Brouwer A., Wilbrink H.: Hermitian unitals are code words. Discret. Math. 97(1–3), 63–68 (1991).

    Article  MathSciNet  Google Scholar 

  10. Bose R.C., Burton R.C.: A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes. J. Comb. Theory 1, 96–104 (1966).

    Article  MathSciNet  Google Scholar 

  11. Chouinard K.: Weight distributions of codes from finite planes. PhD Thesis, University of Virginia (2000).

  12. De Boeck M.: Intersection problems in finite geometries. PhD Thesis, Ghent University (2014).

  13. De Winter S., Schillewaert J., Verstraete J.: Large incidence-free sets in geometries. Electron. J. Comb. 19(4), Paper 24, 16 (2012).

    MathSciNet  Google Scholar 

  14. Delsarte P., Goethals J.M., MacWilliams F.J.: On generalized Reed-Muller codes and their relatives. Inf. Control 16, 403–442 (1970).

    Article  MathSciNet  Google Scholar 

  15. Denaux L.: Characterising and constructing codes using finite geometries. PhD Thesis, Ghent University (2023).

  16. Fack V., Fancsali S.L., Storme L., Van de Voorde G., Winne J.: Small weight codewords in the codes arising from Desarguesian projective planes. Des. Codes Cryptogr. 46(1), 25–43 (2008).

    Article  MathSciNet  Google Scholar 

  17. Haemers W.H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226(228), 593–616 (1995).

    Article  MathSciNet  Google Scholar 

  18. Key J.D.: Hermitian varieties as codewords. Des. Codes Cryptogr. 1(3), 255–259 (1991).

    Article  MathSciNet  Google Scholar 

  19. Lavrauw M., Storme L., Sziklai P., Van de Voorde G.: An empty interval in the spectrum of small weight codewords in the code from points and \(k\)-spaces of PG\((n, q)\). J. Comb. Theory Ser. A 116(4), 996–1001 (2009).

    Article  MathSciNet  Google Scholar 

  20. Lavrauw M., Storme L., Van de Voorde G.: On the code generated by the incidence matrix of points and hyperplanes in PG\((n, q)\) and its dual. Des. Codes Cryptogr. 48(3), 231–245 (2008).

    Article  MathSciNet  Google Scholar 

  21. Lavrauw M., Storme L., Van de Voorde G.: On the code generated by the incidence matrix of points and \(k\)-spaces in PG\((n, q)\) and its dual. Finite Fields Appl. 14(4), 1020–1038 (2008).

    Article  MathSciNet  Google Scholar 

  22. Lavrauw M., Storme L., Van de Voorde G.: Linear codes from projective spaces. In: Error-Correcting Codes, Finite Geometries and Cryptography, Volume 523 of Contemporary Mathematics, pp. 185–202. American Mathematical Society, Providence, RI (2010).

  23. McGuire G., Ward H.N.: The weight enumerator of the code of the projective plane of order \(5\). Geom. Dedicata 73(1), 63–77 (1998).

    Article  MathSciNet  Google Scholar 

  24. Polverino O., Zullo F.: Codes arising from incidence matrices of points and hyperplanes in PG\((n, q)\). J. Comb. Theory Ser. A 158, 1–11 (2018).

    Article  MathSciNet  Google Scholar 

  25. Szőnyi T., Weiner Z.: Stability of k mod p multisets and small weight codewords of the code generated by the lines of PG(2, \(q\)). J. Comb. Theory Ser. A 157, 321–333 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for the time and effort invested in reviewing our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Adriaensen.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Communicated by T. Feng.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adriaensen, S., Denaux, L. Small weight codewords of projective geometric codes II. Des. Codes Cryptogr. 92, 2451–2472 (2024). https://doi.org/10.1007/s10623-024-01397-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-024-01397-8

Keywords

Mathematics Subject Classification

Navigation