Skip to main content
Log in

Construction and enumeration of self-orthogonal and self-dual codes over Galois rings of even characteristic

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let \(e \ge 2\) and \(r\ge 1\) be integers, and let \({\mathcal {R}}_{e,r}\) denote the Galois ring of characteristic \(2^{e}\) and cardinality \(2^{e r}.\) The Teichm\(\ddot{u}\)ller set \({\mathcal {T}}_{r}\) of the Galois ring \({\mathcal {R}}_{e,r}\) can be viewed as the finite field of order \(2^r\) under the addition operation \(\oplus \) and the multiplication operation of \({\mathcal {R}}_{e,r},\) where for \(a,b \in {\mathcal {T}}_{r},\) \(a\oplus b \) is the unique element in \({\mathcal {T}}_{r}\) satisfying \(a\oplus b = (a+b) ~(\text {mod }2).\) Now a linear code \({\mathscr {C}}\) of length n over \({\mathcal {T}}_{r}\) is said to be k-doubly even if it has a k-dimensional linear subcode \({\mathscr {C}}_{0}\) satisfying \({\textbf {c}}\cdot {\textbf {c}} \equiv 0~(\text {mod 4})\) for all \({\textbf {c}}\in {\mathscr {C}}_0,\) where each \({\textbf {c}}\in {\mathscr {C}}_0\) is viewed as an element of \({\mathcal {R}}_{e,r}^n\) and \(\cdot \) denotes the Euclidean bilinear form on \({\mathcal {R}}_{e,r}^n.\) A k-doubly even code of length n and dimension k over \({\mathcal {T}}_{r}\) is simply called a doubly even code. In this paper, we count all doubly even codes over \({\mathcal {T}}_{r}\) and their two special classes, viz. the codes containing the all-one vector and the codes that do not contain the all-one vector by studying the geometry of a certain special quadratic space over \({\mathcal {T}}_{r}.\) We further provide a recursive method to construct self-orthogonal and self-dual codes of the type \(\{\texttt {k}_1,\texttt {k}_2,\ldots ,\texttt {k}_e\}\) and length n over \({\mathcal {R}}_{e,r}\) from a \((\texttt {k}_1+\texttt {k}_2+\cdots +\texttt {k}_{\left\lfloor {\frac{e}{2}}\right\rfloor })\)-doubly even self-orthogonal code of the same length n and dimension over \({\mathcal {T}}_{r},\) where n is a positive integer and \(\texttt {k}_1,\texttt {k}_2, \ldots ,\texttt {k}_e\) are non-negative integers satisfying \(2\texttt {k}_1+2\texttt {k}_2+\cdots +2\texttt {k}_{e-i+1} +\texttt {k}_{e-i+2}+\texttt {k}_{e-i+3}+\cdots +\texttt {k}_i \le n\) for , (here \(\left\lfloor {\cdot }\right\rfloor \) denotes the floor function and denotes the ceiling function). With the help of this recursive construction method and the enumeration formulae for doubly even codes over \({\mathcal {T}}_{r}\) and their two special classes, we obtain explicit enumeration formulae for all self-orthogonal and self-dual codes of an arbitrary length over \({\mathcal {R}}_{e,r}.\) Using these enumeration formulae, we classify all self-orthogonal and self-dual codes of lengths 2, 3 and 4 over \({\mathcal {R}}_{2,2}\) up to monomial equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashikhmin A., Knill E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001).

    Article  MathSciNet  Google Scholar 

  2. Bachoc C., Gaborit P.: Designs and self-dual codes with long shadows. J. Combin. Theory 105(1), 15–34 (2004).

    Article  MathSciNet  Google Scholar 

  3. Bannai E., Dougherty S.T., Harada M., Oura M.: Type II codes, even unimodular lattices and invariant rings. IEEE Trans. Inform. Theory 45(4), 1194–1205 (1999).

    Article  MathSciNet  Google Scholar 

  4. Betty R.A., Munemasa A.: A mass formula for self-orthogonal codes over \({\mathbb{Z} }_{p^2}\). J. Comb. Inform. Syst. Sci. 34, 51–66 (2009).

    Google Scholar 

  5. Bouyuklieva S., Varbanov Z.: Some connections between self-dual codes, combinatorial designs and secret sharing schemes. Adv. Math. Commun. 5(2), 191–198 (2011).

    Article  MathSciNet  Google Scholar 

  6. Calderbank A.R., Hammons A.R., Kumar P.V., Sloane N.J.A., Solé P.: The \({\mathbb{Z} }_4\)-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994).

    Article  MathSciNet  Google Scholar 

  7. Calderbank A.R., Hammons A.R., Kumar P.V., Sloane N.J.A., Solé P.: A linear construction for certain Kerdock and Preparata codes. Bull. Am. Math. Soc. 29(2), 218–222 (1993).

    Article  MathSciNet  Google Scholar 

  8. Choi W.: Mass formula of self-dual codes over Galois rings \(GR(p^2,2)\). Korean J. Math. 24(4), 751–764 (2016).

    Article  MathSciNet  Google Scholar 

  9. Dougherty S.T., Kim J.L., Liu H.: Constructions of self-dual codes over finite commutative chain rings. Int. J. Inf. Coding Theory 1(2), 171–190 (2010).

    MathSciNet  Google Scholar 

  10. Dougherty S.T., Mesnager, S., Solé, P.: Secret-sharing schemes based on self-dual codes. In: IEEE Information Theory Workshop, pp. 338–342 (2008).

  11. Gaborit P.: Construction of new extremal unimodular lattices. Eur. J. Combin. 25(4), 549–564 (2004).

    Article  MathSciNet  Google Scholar 

  12. Gaborit P.: Mass formula for self-dual codes over \({\mathbb{Z} }_{4}\) and \({\mathbb{F} }_q+u{\mathbb{F} }_q\) rings. IEEE Trans. Inf. Theory 42(4), 1222–1228 (1996).

    Article  MathSciNet  Google Scholar 

  13. Grove L.C.: Classical groups and Geometric Algebra. American Mathematical Society, Providence (2008).

    Google Scholar 

  14. Huffman W.C.: On the classification and enumeration of self-dual codes. Finite Fields Appl. 11(3), 451–490 (2005).

    Article  MathSciNet  Google Scholar 

  15. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  Google Scholar 

  16. Jin L., Xing C.: Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes. IEEE Trans. Inf. Theory 58(8), 5484–5489 (2011).

    Article  MathSciNet  Google Scholar 

  17. Kennedy G.T., Pless V.: On designs and formally self-dual codes. Des. Codes Cryptogr. 4(1), 43–55 (1994).

    Article  MathSciNet  Google Scholar 

  18. Lidl R., Niederreiter H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1986).

    Google Scholar 

  19. Nagata K., Nemenzo F., Wada H.: Mass formula and structure of self-dual codes over \({\mathbb{Z} }_{2^s}\). Des. Codes Cryptogr. 67(3), 293–316 (2013).

    Article  MathSciNet  Google Scholar 

  20. Nagata K., Nemenzo F., Wada H.: The number of self-dual codes over \({\mathbb{Z} }_{p^3}\). Des. Codes Cryptogr. 50(3), 291–303 (2009).

    Article  MathSciNet  Google Scholar 

  21. Nagata, K., Nemenzo, F., Wada, H.: Constructive algorithm of self-dual error-correcting codes. In: Proceedings of 11th International Workshop on ACCT (ISSN1313-423X), pp. 215–220 (2008).

  22. Norton G.H., Sǎlǎgean A.: On the structure of linear and cyclic codes over a finite chain ring. AAECC 10(6), 489–506 (2000).

    Article  MathSciNet  Google Scholar 

  23. Pless V.: On the uniqueness of Golay codes. J. Combin. Theory 5(3), 215–228 (1968).

    Article  MathSciNet  Google Scholar 

  24. Taylor D.E.: The Geometry of the Classical groups, Sigma Series in Pure Mathematics, vol. 9. Heldermann Verlag, Berlin (1992).

    Google Scholar 

  25. Vasquez T.L.E., Petalcorin G.C.: Mass formula for self-dual codes over Galois rings \(GR(p^3, r)\). Eur. J. Pure Appl. Math. 12(4), 1701–1716 (2019).

    Article  MathSciNet  Google Scholar 

  26. Wan Z.-X.: Lectures on Finite Fields and Galois Rings. World Scientific Publishing Company, Singapore (2003).

    Book  Google Scholar 

  27. Wood J.A.: Witt’s extension theorem for mod four valued quadratic forms. Trans. Am. Math. Soc. 336(1), 445–461 (1993).

    MathSciNet  Google Scholar 

  28. Yadav M., Sharma A.: A recursive method for the construction and enumeration of self-orthogonal and self-dual codes over the quasi-Galois ring \({\mathbb{F} }_{2^r}[u]/< u^e> \). Des. Codes Cryptogr. 91, 1973–2003 (2023).

    Article  MathSciNet  Google Scholar 

  29. Yadav M., Sharma A.: Mass formulae for Euclidean self-orthogonal and self-dual codes over finite commutative chain rings. Discret. Math. 344(1), 1–24 (2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Sharma.

Additional information

Communicated by J. Bierbrauer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M. Yadav, Research support by CSIR, India, under Grant no. 09/1117(0006)/2019-EMR-I, is gratefully acknowledged. A. Sharma, Research support by the Department of Science and Technology, India, under Grant no. DST/INT/RUS/RSF/P-41/2021 with TPN 65025 is gratefully acknowledged.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, M., Sharma, A. Construction and enumeration of self-orthogonal and self-dual codes over Galois rings of even characteristic. Des. Codes Cryptogr. 92, 303–339 (2024). https://doi.org/10.1007/s10623-023-01310-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01310-9

Keywords

Mathematics Subject Classification

Navigation