Skip to main content
Log in

Minimal and optimal binary codes obtained using \(C_D\)-construction over the non-unital ring I

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this article, we construct linear codes over the commutative non-unital ring I of size four. We obtain their Lee-weight distributions and study their binary Gray images. Under certain mild conditions, these classes of binary codes are minimal and self-orthogonal. All codes in this article are few-weight codes. Besides, an infinite class of these binary codes consists of distance optimal codes with respect to the Griesmer bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Alahmadi A., Alkathiry A., Altassan A., Bonnecaze A., Shoaib H., Solé P.: The build-up construction of quasi self-dual codes over a non-unital ring. J. Algebra Appl. (2020). https://doi.org/10.1142/S0219498822501432.

    Article  Google Scholar 

  2. Alahmadi A., Alkathiry A., Altassan A., Bonnecaze A., Shoaib H., Solé P.: The build-up construction over a commutative non-unital ring. Des. Codes Cryptogr. 90(12), 3003–3010 (2022).

    Article  MathSciNet  Google Scholar 

  3. Alahmadi A., Altassan A., Basaffar W., Bonnecaze A., Shoaib H., Solé P.: Quasi Type IV codes over a non-unital ring. Appl. Algebra Eng. Comm. Comput. 32, 217–228 (2021).

    Article  MathSciNet  Google Scholar 

  4. Alahmadi A., Altassan A., Basaffar W., Shoaib H., Bonnecaze A., Solé P.: Type IV codes over a non-unital ring. J. Algebra Appl. 21(07), 2250142 (2022).

    Article  MathSciNet  Google Scholar 

  5. Ashikhmin A., Barg A.: Minimal vectors in linear codes. IEEE Trans. Inform. Theory 44(5), 2010–2017 (1998).

    Article  MathSciNet  Google Scholar 

  6. Ashikhmin A., Knill E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001).

    Article  MathSciNet  Google Scholar 

  7. Bonisoli A.: Every equidistant linear code is a sequence of dual Hamming codes. Ars Combinatoria 18, 181–186 (1984).

    MathSciNet  Google Scholar 

  8. Calderbank R., Kantor W.M.: The geometry of two-weight codes. Bull. London Math. Soc. 18(2), 97–122 (1986).

    Article  MathSciNet  Google Scholar 

  9. Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over GF (4). IEEE Trans. Inform. Theory 44(4), 1369–1387 (1998).

    Article  MathSciNet  Google Scholar 

  10. Chang S., Hyun J.Y.: Linear codes from simplicial complexes. Des. Codes Cryptogr. 86(10), 2167–2181 (2018).

    Article  MathSciNet  Google Scholar 

  11. Delsarte P.: Weights of linear codes and strongly regular normed spaces. Discret. Math. 3(1–3), 47–64 (1972).

    Article  MathSciNet  Google Scholar 

  12. Ding C., Helleseth T., Kløve T., Wang X.: A generic construction of Cartesian authentication codes. IEEE Trans. Inform. Theory 53(6), 2229–2235 (2007).

    Article  MathSciNet  Google Scholar 

  13. Ding K., Ding C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inform. Theory 61(11), 5835–5842 (2015).

    Article  MathSciNet  Google Scholar 

  14. Dougherty S.T., Gaborit P., Harada M., Munemasa A., Solé P.: Type IV self-dual codes over rings. IEEE Trans. Inform. Theory 45(7), 2345–2360 (1999).

    Article  MathSciNet  Google Scholar 

  15. Dougherty S.T., Gaborit P., Harada M., Solé P.: Type II Codes Over \({\mathbb{F} }_2 + u{\mathbb{F} }_2\). IEEE Trans. Inform. Theory 45(1), 32–45 (1999).

    Article  MathSciNet  Google Scholar 

  16. Du Z., Li C., Mesnager S.: Constructions of self-orthogonal codes from hulls of BCH codes and their parameters. IEEE Trans. Inform. Theory 66(11), 6774–6785 (2020).

    Article  MathSciNet  Google Scholar 

  17. Fine B.: Classification of finite rings of order \(p^2\). Math. Mag. 66(4), 248–252 (1993).

    Article  MathSciNet  Google Scholar 

  18. Gan C., Li C., Mesnager S., Qian H.: On hulls of some primitive BCH codes and self-orthogonal codes. IEEE Trans. Inform. Theory 67(10), 6442–6455 (2021).

    Article  MathSciNet  Google Scholar 

  19. Grassl, M.: Bounds on the minimum distance of linear codes http://www.codetables.de, Accessed on 1, 2023

  20. Griesmer J.H.: A bound for error correcting codes. IBM J. Res. Dev. 4(5), 532–542 (1960).

    Article  MathSciNet  Google Scholar 

  21. Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J., Solé P.: The \({\mathbb{Z} }_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994).

    Article  MathSciNet  Google Scholar 

  22. Hyun J.Y., Kim H.K., Wu Y., Yue Q.: Optimal minimal linear codes from posets. Des. Codes Cryptogr. 88(12), 2475–2492 (2020).

    Article  MathSciNet  Google Scholar 

  23. Hyun J.Y., Lee J., Lee Y.: Infinite families of optimal linear codes constructed from simplicial complexes. IEEE Trans. Inform. Theory 66(11), 6762–6775 (2020).

    Article  MathSciNet  Google Scholar 

  24. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  Google Scholar 

  25. Kim J.L., Ohk D.E.: DNA codes over two noncommutative rings of order four. J. Appl. Math. Comput. 68(3), 2015–2038 (2022).

    Article  MathSciNet  Google Scholar 

  26. Kim J.L., Roe Y.G.: Construction of quasi self-dual codes over a commutative non-unital ring of order 4. Appl. Algebra Eng. Comm. Comput. (2022). https://doi.org/10.1007/s00200-022-00553-8.

    Article  Google Scholar 

  27. Kløve T.: Codes for Error Detection. World Scientific, Singapore (2007).

    Book  Google Scholar 

  28. Liu H., Yu Z.: Linear Codes from Simplicial Complexes over \({\mathbb{F} } _ {2^ n} \). (2023). arXiv preprint arXiv:2303.09292.

  29. MacWilliams F.J., Sloane J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).

    Google Scholar 

  30. Massey J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory, pp. 276–279 (1993)

  31. Sagar V., Sarma R.: Octanary linear codes using simplicial complexes. Cryptogr. Commun. 15(3), 599–616 (2023). https://doi.org/10.1007/s12095-022-00617-z.

  32. Sagar V., Sarma R.: Certain binary minimal codes constructed using simplicial complexes. (2023). arXiv preprint arXiv:2211.15747v2.

  33. Sagar V., Sarma R.: Codes over the non-unital non-commutative ring \(E\) using simplicial complexes. (2023). arXiv preprint arXiv:2304.06758.

  34. Shi M., Li X.: A new family of optimal binary few-weight codes from simplicial complexes. IEEE Commun. Lett. 25(4), 1048–1051 (2021).

    Article  Google Scholar 

  35. Shi M., Li X.: Few-weight codes over a non-chain ring associated with simplicial complexes and their distance optimal Gray image. Finite Fields Appl. 80, 101994 (2022).

    Article  MathSciNet  Google Scholar 

  36. Shi M., Li X.: New classes of binary few weight codes from trace codes over a chain ring. J. Appl. Math. Comput. 68(3), 1869–1880 (2022).

    Article  MathSciNet  Google Scholar 

  37. Shi M., Guan Y., Wang C., Solé P.: Few-weight codes from trace codes over \(R_k\). Bull. Aust. Math. Soc. 98(1), 167–174 (2018).

    Article  MathSciNet  Google Scholar 

  38. Shi M., Qian L., Helleseth T., Solé P.: Five-weight codes from three-valued correlation of M-sequences. Adv. Math. Commun. (2021). https://doi.org/10.3934/amc.2021022.

    Article  Google Scholar 

  39. Shi M., Wang S., Kim J.L., Solé P.: Self-orthogonal codes over a non-unital ring and combinatorial matrices. Des. Codes Cryptogr. (2021). https://doi.org/10.1007/s10623-021-00948-7.

    Article  Google Scholar 

  40. Shi M., Xuan W., Solé P.: Two families of two-weight codes over \({\mathbb{F} }_4\). Des. Codes Cryptogr. 88(12), 2493–2505 (2020).

    Article  MathSciNet  Google Scholar 

  41. Shi M., Li S., Kim J.L., Solé P.: LCD and ACD codes over a noncommutative non-unital ring with four elements. Cryptogr. Commun. 14(3), 627–640 (2022). https://doi.org/10.1007/s12095-021-00545-4.

  42. Wang S., Shi M.: Few-weight \({\varvec {{{\mathbb{Z} }}}} _p \varvec {{{\mathbb{Z} }}} _p [u]\)-additive codes from down-sets. J. Appl. Math. Comput. 68(4), 2381–2388 (2022).

    Article  MathSciNet  Google Scholar 

  43. Wu Y., Lee Y.: Binary LCD codes and self-orthogonal codes via simplicial complexes. IEEE Commun. Lett. 24(6), 1159–1162 (2020).

    Article  Google Scholar 

  44. Wu Y., Lee Y.: Self-orthogonal codes constructed from posets and their applications in quantum communication. Mathematics 8(9), 1495 (2020).

    Article  Google Scholar 

  45. Wu Y., Li C., Xiao F.: Quaternary linear codes and related binary subfield codes. IEEE Trans. Inform. Theory 68(5), 3070–3080 (2022).

    Article  MathSciNet  Google Scholar 

  46. Wu Y., Zhu X., Yue Q.: Optimal few-weight codes from simplicial complexes. IEEE Trans. Inform. Theory 66(6), 3657–3663 (2020).

    Article  MathSciNet  Google Scholar 

  47. Yuan J., Ding C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inform. Theory 52(1), 206–212 (2006).

    Article  MathSciNet  Google Scholar 

  48. Zhou Z., Li X., Tang C., Ding C.: Binary LCD codes and self-orthogonal codes from a generic construction. IEEE Trans. Inform. Theory 65(1), 16–27 (2018).

    Article  MathSciNet  Google Scholar 

  49. Zhu X., Wei Y.: Few-weight quaternary codes via simplicial complexes. AIMS Math. 6(5), 5124–5132 (2021).

    Article  MathSciNet  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

VS and RS contributed equally to this work. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Ritumoni Sarma.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Y. Zhou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagar, V., Sarma, R. Minimal and optimal binary codes obtained using \(C_D\)-construction over the non-unital ring I. Des. Codes Cryptogr. 92, 145–157 (2024). https://doi.org/10.1007/s10623-023-01299-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01299-1

Keywords

Mathematics Subject Classification

Navigation