Skip to main content
Log in

A class of constacyclic codes are generalized Reed–Solomon codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Maximum distance separable (MDS) codes are optimal in the sense that the minimum distance cannot be improved for a given length and code size. The most prominent MDS codes are generalized Reed–Solomon (GRS) codes. The square \(\mathcal {C}^{2}\) of a linear code \(\mathcal {C}\) is the linear code spanned by the component-wise products of every pair of codewords in \(\mathcal {C}\). For an MDS code \(\mathcal {C}\), it is convenient to determine whether \(\mathcal {C}\) is a GRS code by determining the dimension of \(\mathcal {C}^{2}\). In this paper, we investigate under what conditions that MDS constacyclic codes are GRS. For this purpose, we first study the square of constacyclic codes. Then, we give a sufficient condition that a constacyclic code is GRS. In particular, we provide a necessary and sufficient condition that a constacyclic code of a prime length is GRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashikhmin A., Knill E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inform. Theory. 47(7), 3065–3072 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball, S.: The Grassl-Rötteler cyclic and constacyclic MDS codes are generalised Reed–Solomon codes, arXiv:2112.11896.

  3. Ball S., Vilar R.: Determining when a truncated generalised Reed–Solomon code is Hermitian self-orthogonal. IEEE Trans. Inform. Theory. 68(6), 3796–3805 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  4. Beelen, P., Puchinger, S., Rosenkilde, J.: Twisted Reed-Solomon codes, Proc. Int. Symp. Inf. Theory(ISIT). 336-340 (2017).

  5. Beelen P., Puchinger S., Rosenkilde J.: Twisted Reed–Solomon codes. IEEE Trans. Inform. Theory. 68(5), 3047–3061 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  6. Bierbrauer J.: The theory of cyclic codes and a generalization to additive codes. Des. Codes Cryptogr. 25, 189–206 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  7. Cascudo I.: On squares of cyclic codes. IEEE Trans. Inform. Theory. 65(2), 1034–1047 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  8. Cascudo I., Cramer R., Mirandola D., Zémor G.: Squares of random linear codes. IEEE Trans. Inform. Theory. 61(3), 1159–1173 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  9. Cauchy A.: Recherches sur les nombres. J. Ecole Polytechnique. 9, 99–116 (1813).

    Google Scholar 

  10. Chen B., Ling S., Zhang G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inform. Theory. 61(3), 1474–1484 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  11. Davenport H.: On the addition of residue classes. J. London Math. Soc. 10, 30–32 (1935).

    Article  MathSciNet  MATH  Google Scholar 

  12. Falk B.H., Heninger N., Rudow M.: Properties of constacyclic codes under the Schur product. Des. Codes Cryptogr. 88, 993–1021 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  13. Grassl, M., Rötteler, M.: Quantum MDS codes over small fields, Proc. Int. Symp. Inf. Theory(ISIT). 1104-1108 (2015).

  14. Guo G., Li R., Liu Y.: Application of Hermitian self-orthogonal GRS codes to some quantum MDS codes. Finite Fields Appl. 76, 101901 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  15. Kai X., Zhu S., Li P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inform. Theory. 60(4), 2080–2086 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu H., Liu S.: Construction of MDS twisted Reed–Solomon codes and LCD MDS codes. Des. Codes Cryptogr. 89, 2051–2065 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  17. Mi J., Cao X.: Constructing MDS Galois self-dual constacyclic codes over finite fields. Discret. Math. 344(6), 112388 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  18. Mirandola D., Zémor G.: Critical pairs for the product singleton bound. IEEE Trans. Inform. Theory. 61(9), 4928–4937 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  19. Rains E.M.: Nonbinary quantum codes. IEEE Trans. Inform. Theory. 45(6), 1827–1832 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  20. Randriambololona H.: On products and powers of linear codes under componentwise multiplication. Contemp. Math. 637, 3–78 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  21. Roth R.: Introduction to Coding Theory. Cambridge University Press, Cambridge (2006).

    Book  MATH  Google Scholar 

  22. Roth R.M., Lempel A.: A construction of non-Reed–Solomon type MDS codes. IEEE Trans. Inform. Theory. 35(3), 655–657 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  23. Roth R.M., Seroussi G.: On generator matrices of MDS codes (Corresp.). IEEE Trans. Inform. Theory. 31(6), 826–830 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  24. Vosper A.G.: The critical Pairs of subsets of a group of prime order. J. London Math. Soc. 31, 200–205 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang G., Tang C.: Application of GRS codes to some entanglement-assisted quantum MDS codes. Quantum Inf. Process. 98(21), 1–16 (2022).

    MathSciNet  MATH  Google Scholar 

  26. Zhang T., Ge G.: Some new classes of quantum MDS codes from constacyclic codes. IEEE Trans. Inform. Theory. 61(9), 5224–5228 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhu, C., Liao, Q.: The non-GRS properties for the twisted generalized Reed–Solomon code and its extended code, arXiv:2204.11955.

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant Nos. 12271199, 12171191 and The Fundamental Research Funds for the Central Universities 30106220482. We sincerely thank the reviewer for their valuable comments which have improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengwei Liu.

Additional information

Communicated by J. Bierbrauer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liu, S. A class of constacyclic codes are generalized Reed–Solomon codes. Des. Codes Cryptogr. 91, 4143–4151 (2023). https://doi.org/10.1007/s10623-023-01294-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01294-6

Keywords

Mathematics Subject Classification

Navigation