Skip to main content
Log in

Scheduling to reduce close contacts: resolvable grid graph decomposition and packing

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Motivated by the COVID-19 pandemic, we consider the scheduling of seating arrangement for an event that is divided into sessions, aiming at reducing the number of close contacts of participants, while the physical and temporal distancing rules are taken into consideration simultaneously. In this paper, we formalize the requirements as a resolvable graph decomposition or packing problem, and focus on the grid graphs defined over vertices that are arranged into arrays embedded in the Euclidean space. We provide explicit constructions of such arrangement, and particularly for those that reach or asymptotically reach the largest possible number of sessions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Abel R.J.R., Greig M.: BIBDs with small block size. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 72–79. Chapman & Hall/CRC, Boca Raton (2007).

    Google Scholar 

  2. Abel R.J.R., Ge G., Yin J.: Resolvable and near-resolvable designs. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 124–132. Chapman & Hall/CRC, Boca Raton (2007).

    Google Scholar 

  3. Bermond J.-C., Heinrich K., Yu M.-L.: Existence of resolvable path designs. Eur. J. Comb. 11, 205–211 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bryant D., Rodger C.: Cycle decompositions. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 373–382. Chapman & Hall/CRC, Boca Raton (2007).

    Google Scholar 

  5. Colbourn C.J., Stinson D.R., Zhu L.: More frames with block size four. J. Comb. Math. Comb. Comput. 23, 3–19 (1997).

    MathSciNet  MATH  Google Scholar 

  6. Danziger P., Mendelsohn E., Quattrocchi G.: Resolvable decompositions of \(\lambda {K}_n\) into the union of two \(2\)-paths. ARS Comb. 93, 33–49 (2009).

    MATH  Google Scholar 

  7. Ge G., Ling A.C.H.: On the existence of resolvable \({K}_4-e\)-designs. J. Comb. Des. 15, 502–510 (2007).

    Article  MATH  Google Scholar 

  8. Greenhalgh T., Jimenez J.L., Prather K.A., et al.: Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet 397, 1603–1605 (2021).

    Article  Google Scholar 

  9. Horton J.D.: Resolvable path designs. J. Comb. Theory Ser. A 39, 117–131 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang C.: Resolvable balanced bipartite designs. Discret. Math. 14, 319–335 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  11. Kirkman T.P.: Query VI. In: Lady’s and Gentleman’s Diary. pp. 48 (1850).

  12. Lenz H., Ringel G.: A brief review on Egmont Köhler’s mathematical work. Discret. Math. 97, 3–16 (1991).

    Article  MATH  Google Scholar 

  13. Li Y., Yin J.: Resolvable packings of \(K_v\) with \(K_2\times K_c\)’s. J. Comb. Des. 17, 177–189 (2009).

    Article  Google Scholar 

  14. Lidl R., Niederreiter H.: Finite Fields, 2nd edn Cambridge University Press, Cambridge (1997).

    MATH  Google Scholar 

  15. Lim W.-Y., Tan G.S.E., Htun H.L., et al.: First nosocomial cluster of COVID-19 due to the Delta variant in a major acute care hospital in Singapore: investigations and outbreak response. J. Hosp. Infect. 122, 27–34 (2022).

    Article  Google Scholar 

  16. Lu X.-N.: Optimal resolvable \(2\times c\) grid-block coverings. Util. Math. 103, 111–120 (2017).

    MathSciNet  MATH  Google Scholar 

  17. Lu X.-N., Satoh J., Jimbo M.: Grid-block difference families and related combinatorial structures. Discret. Math. 342, 2023–2032 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  18. Mutoh Y., Jimbo M., Fu H.-L.: A resolvable \(r\times c\) grid-block packing and its application to DNA library screening. Taiwan. J. Math. 8, 713–737 (2004).

    Article  MATH  Google Scholar 

  19. Stinson D.R.: Frames for Kirkman triple systems. Discret. Math. 65, 289–300 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  20. Stinson D.R.: A survey of Kirkman triple systems and related designs. Discret. Math. 92, 371–393 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  21. Su R., Wang L.: Minimum resolvable coverings of \({K}_v\) with copies of \({K}_4-e\). Graphs Combin. 27, 883–896 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang L.: Completing the spectrum of resolvable \(({K}_4-e)\)-designs. ARS Comb. 105, 289–291 (2012).

    MATH  Google Scholar 

  23. Watson O.J., Barnsley G., Toor J., et al.: Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet Infect. Dis. 22, 1293–1302 (2022).

    Article  Google Scholar 

  24. Willett B.J., Grove J., MacLean O.A., et al.: SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat. Microbiol. 7, 1161–1179 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Additional information

Communicated by C. J. Colbourn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chee, Y.M., Ling, A.C.H., Vu, V.K. et al. Scheduling to reduce close contacts: resolvable grid graph decomposition and packing. Des. Codes Cryptogr. 91, 4093–4106 (2023). https://doi.org/10.1007/s10623-023-01291-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01291-9

Keywords

Mathematics Subject Classification

Navigation