Skip to main content
Log in

Ternary self-orthogonal codes from weakly regular bent functions and their application in LCD Codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Self-orthogonal codes are linear codes such that they are contained in their duals. Self-orthogonal codes have attracted much attention due to their applications in linear complementary dual codes (LCD codes for short), quantum codes, row-self-orthogonal matrices and so on. In this paper, we first construct several families of ternary self-orthogonal codes from weakly regular bent functions. The parameters and weight distributions of them are determined. Then we use the self-orthogonal codes to construct new infinite families of ternary LCD codes. Some LCD codes are optimal according to the Code Tables at http://www.codetables.de/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78, 405–409 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  2. Carlet C., Mesnager S., Tang C., Qi Y., Pellikaan R.: Linear codes over \({\mathbb{F}}_q\) are equivalent to LCD codes for \(q>3\). IEEE Trans. Inf. Theory 64(4), 3010–3017 (2018).

    Article  MATH  Google Scholar 

  3. Chen G., Li R.: Ternary self-orthogonal codes of dual distance three and ternary quantum codes of distance three. Des. Codes Cryptogr. 69, 53–63 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  4. Ding C.: Linear codes from some 2-designs. IEEE Trans. Inf. Theory 60, 3265–3275 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  5. Ding C.: Designs from linear codes. World Scientific, Singapore (2019).

    MATH  Google Scholar 

  6. Ding C., Luo J., Niederreiter H.: Two-weight codes punctured from irreducible cyclic codes. Coding Theory Cryptogr. (2008). https://doi.org/10.1142/9789812832245_0009.

    Article  MATH  Google Scholar 

  7. Ding C., Niederreiter H.: Cyclotomic linear codes of order 3. IEEE Trans. Inf. Theory 53(6), 2274–2277 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding K., Ding C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inf. Theory 61, 5835–5842 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  9. Fu Q., Li R., Guo L.: LCD MDS codes from cyclic codes. Procedia Comput. Sci. 154, 663–66 (2019).

    Article  Google Scholar 

  10. Helleseth T., Hollmann H., Kholosha A., Wang Z., Xiang Q.: Proofs of two conjectures on ternary weakly regular bent functions. IEEE Trans. Inf. Theory 55(11), 5272–5283 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  11. Helleseth T., Kholosha A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory 52(5), 2018–2032 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  12. Helleseth T., Kholosha A.: New binomial bent functions over the finite fields of odd characteristic. IEEE International Symposium on Information Theory 1277–1281 (2010).

  13. Helleseth T., Kholosha A.: New binomial bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory 56(9), 4646–4652 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  14. Huffman W.C., Pless V.: Fundamentals of error-correcting codes. Cambridge University Press, Cambridge (2003).

    Book  MATH  Google Scholar 

  15. Heng Z., Ding C., Zhou Z.: Minimal linear codes over finite fields. Finite Fields Appl. 54, 176–196 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  16. Heng Z., Wang Q., Ding C.: Two families of optimal linear codes and their subfield codes. IEEE Trans. Inf. Theory 66(11), 6872–6883 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  17. Heng Z., Wang W., Wang Y.: Projective binary linear codes from special Boolean functions. Appl. Algebra Eng., Commun. Comput. 32(4), 521–552 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang X., Yue Q., Wu Y., Shi X.: Ternary primitive LCD BCH codes. Adv. Math. Commun. 17(3), 644–659 (2023).

    Article  MathSciNet  MATH  Google Scholar 

  19. Ireland K., Rosen M.: A Classical Introduction to Modern Number Theory (Graduate Texts in Mathematics), 2nd edn Springer, New York (1990).

    MATH  Google Scholar 

  20. Li C., Yue Q., Li F.: Weight distributions of cyclic codes with respect to pairwise coprime order elements. Finite Fields Appl. 28, 94–114 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  21. Li F., Yue Q., Wu Y.: Designed distances and parameters of new LCD BCH codes over finite fields. Cryptogr. Commun. 12, 147–163 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  22. Li X., Cheng F., Tang C., Zhou Z.: Some classes of LCD codes and self-orthogonal codes over finite fields. Adv. Math. Commun. 13(2), 267–280 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  23. Li X., Heng Z.: Constructions of near MDS codes which are optimal locally recoverable codes. Finite Fields Appl. 88, 102184 (2023).

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu J.: Ternary quantum codes of minimum distance three. Int. J. Quantum Inf. 8(7), 1179–1186 (2010).

    Article  MATH  Google Scholar 

  25. Li N., Helleseth T., Tang X., Kholosha A.: Several new classes of bent functions from Dillon exponents. IEEE Trans. Inf. Theory 59(3), 1818–1831 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  26. Li N., Tang X., Helleseth T.: New constructions of quadratic bent functions in polynomial form. IEEE Trans. Inform. Theory 60(9), 5760–5767 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  27. Li S., Li C., Ding C., Liu H.: Two families of LCD BCH codes. IEEE Trans. Inf. Theory 63(9), 5699–5717 (2017).

    MathSciNet  MATH  Google Scholar 

  28. Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1997).

    MATH  Google Scholar 

  29. Ling S., Luo J., Xing C.: Generalization of Steanes enlargement construction of quantum codes and applications. IEEE. Trans. Inform. Theory 56, 4080–4084 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  30. Massey J.L.: Linear codes with complementary duals. Discrete Math. 106(107), 337–342 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  31. Massey J.L.: Orthogonal, antiorthogonal and self-orthogonal matrices and their codes, Communications and Coding. England Research Studies Press, Somerset (1998).

    MATH  Google Scholar 

  32. Steane A.M.: Enlargement of Calderbank-Shor-Steane quantum codes. IEEE Trans. Inf. Theory 45, 2492–2495 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  33. Shi X., Yue Q., Yang S.: New LCD MDS codes constructed from generalized Reed-Solomon codes. J. Algebra Appl. 18(8), 1950150 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  34. Tang C., Li N., Qi Y., Zhou Z., Tor H.: Linear codes with two or three weights from weakly regular bent functions. IEEE Trans. Inf. Theory 62(3), 1166–1176 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers and the Editor for their constructive suggestions which greatly improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexiang Li.

Additional information

Communicated by T. Helleseth.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Z. Heng’s research was supported in part by the National Natural Science Foundation of China under Grant 12271059, in part by the Young Talent Fund of University Association for Science and Technology in Shaanxi, China, under Grant 20200505, and in part by the Fundamental Research Funds for the Central Universities, CHD, under Grant 300102122202

F. Liu’s research was supported in part by Natural Science Basic Research Program of Shaanxi under Grant 2021JM-149.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heng, Z., Li, D. & Liu, F. Ternary self-orthogonal codes from weakly regular bent functions and their application in LCD Codes. Des. Codes Cryptogr. 91, 3953–3976 (2023). https://doi.org/10.1007/s10623-023-01287-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01287-5

Keywords

Mathematics Subject Classification

Navigation