Skip to main content
Log in

Constructions for new orthogonal arrays based on large sets of orthogonal arrays

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Orthogonal array is one of the important research subjects in combinatorial design theory and experimental design theory, and it is widely applied to statistics, computer science, coding theory and cryptography. There are many constructions and results for orthogonal array of strength 2, however the results on orthogonal array of strength \(t\ge 3\) are rare. In this paper, we first present two new effective constructions for orthogonal arrays of strength \(t\ge 3\) based on large sets of orthogonal arrays. Second, many infinite families of large sets of orthogonal arrays are obtained and then some new series of orthogonal array of strength \(t\ge 3\) are produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel R., Julian R.: Existence of five MOLS of orders 18 and 60. J. Comb. Des. 23(4), 135–139 (2013).

    MathSciNet  MATH  Google Scholar 

  2. Agrawal V., Dey A.: Orthogonal resolution-IV designs for some asymmetrical factorials. Technometrics 25, 197–199 (1983).

  3. Bierbrauer J.: Introduction to Coding Theory. Chapman/Hall, Boca Raton (2005).

    MATH  Google Scholar 

  4. Bush K.A.: Orthogonal arrays of index unity. Ann. Math. Stat. 23, 426–434 (1952).

    MathSciNet  MATH  Google Scholar 

  5. Bose R.C., Bush K.A.: Orthogonal arrays of strength two and three. Ann. Math. Stat. 23(4), 508–524 (1952).

    MathSciNet  MATH  Google Scholar 

  6. Brouwer A.E., Cohen A.M., Nguyen M.V.M.: Orthogonal arrays of strength 3 and small run sizes. J. Stat. Plan. Inference 136(9), 3268–3280 (2006).

    MathSciNet  MATH  Google Scholar 

  7. Carlet C., Chen X.: Constructing low-weight \(d\)th-order correlation-immune Boolean functions through the Fourier-Hadamard transform. IEEE Trans. Inf. Theory 64, 2969–2978 (2018).

    MATH  Google Scholar 

  8. Colbourn C.J., Dinitz J.H.: The CRC Handbook of Combinatorial Designs. CRC Press, Boca Raton (2007).

    MATH  Google Scholar 

  9. Chen G., Ji L., Lei J.: The existence of mixed orthogonal arrays with four and five factors of strength two. J. Comb. Des. 22(8), 323–342 (2014).

    MathSciNet  MATH  Google Scholar 

  10. Chen G., Lei J.: Constructions of mixed orthogonal arrays of strength three. Sci. Sin. Math. 47(4), 545–564 (2017).

    MATH  Google Scholar 

  11. Chen G., Shi C., Guo Y.: Ideal ramp schemes and augmented orthogonal arrays. Discret. Math. 342(2), 405–411 (2019).

    MathSciNet  MATH  Google Scholar 

  12. Cheng C.S.: Orthogonal arrays with variable numbers of symbols. Ann. Stat. 8, 447–453 (1980).

    MathSciNet  MATH  Google Scholar 

  13. Dong J., Pei D., Wang X.: A class of key predistribution schemes based on orthogonal arrays. J. Comput. Sci. Technol. 23(5), 825–831 (2008).

    MathSciNet  Google Scholar 

  14. DeCock D., Stufken J.: On finding mixed orthogonal arrays of strength 2 with many 2-level factors. Stat. Probab. Lett. 50(4), 383–388 (2000).

    MathSciNet  MATH  Google Scholar 

  15. Du J., Wen Q., Zhang J., Liao X.: New construction of symmetric orthogonal arrays of strength \(t\). IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E96–A(9), 1901–1904 (2013).

    Google Scholar 

  16. Etzion T., Zhou J.: Large sets with multiplicity. Des. Codes Cryptogr. 89, 1661–1690 (2021).

    MathSciNet  MATH  Google Scholar 

  17. Fang K., Li R., Sudjianto A.: Design and Modeling for Computer Experiments. Chapman and Hall/CRC, Boca Raton (2006).

    MATH  Google Scholar 

  18. Fang K.T., Liu M.Q., Qin H., Zhou Y.D.: Theory and Application of Uniform Experimental Designs. Springer Nature Singapore Pte Ltd. and Science Press, Singapore (2018).

    MATH  Google Scholar 

  19. Goyeneche D., Bielawski J., Życzkowski K.: Multipartite entanglement in heterogeneous systems. Phys. Rev. A 94, 012346 (2016).

    Google Scholar 

  20. Goyeneche D., Życzkowski K.: Genuinely multipartite entangled states and orthogonal arrays. Phys. Rev. A 90, 022316 (2014).

    Google Scholar 

  21. Guo, S.: The existence of double large set of orthogonal arrays. Master Dissertation, Hebei Normal University (2015)

  22. Gupta V.K., Nigam A.K.: A class of asymmetrical orthogonal resolution-IV designs. J. Stat. Plan. Inference 11, 381–383 (1985).

    MathSciNet  MATH  Google Scholar 

  23. Gupta V.K., Nigam A.K.: Mixed orthogonal arrays for variance estimation with unequal numbers of promary selections per stratum. Biometrika 74, 735–742 (1987).

    MathSciNet  MATH  Google Scholar 

  24. Hedayat A.S., Sloane N.J.A., Stufken J.: Orthogonal Arrays: Theory and Applications. Springer-Verlag, New York (1999).

    MATH  Google Scholar 

  25. Hedayat A.S., Stufken J., Su G.: On difference schemes and orthogonal arrays of strength \(t\). J. Stat. Plan. Inference 56(2), 307–324 (1996).

    MathSciNet  MATH  Google Scholar 

  26. Ji L., Yin J.: Constructions of new orthogonal arrays and covering arrays of strength three. J. Comb. Theory Ser. A 117, 236–247 (2010).

    MathSciNet  MATH  Google Scholar 

  27. Jiang L., Yin J.: An approach of constructing mixed-level orthogonal arrays of strength \(\ge \) 3. Sci. China Math. 56(6), 1109–1115 (2013).

    MathSciNet  MATH  Google Scholar 

  28. Lin C.D., Bingham D., Sitter R.R., Tang B.: A new and flexible method for constructing designs for computer experiments. Ann. Stat. 38(3), 1460–1477 (2010).

    MathSciNet  MATH  Google Scholar 

  29. Lin C.D., Mukerjee R., Tang B.: Construction of orthogonal and nearly orthogonal Latin hypercubes. Biometrika 96(1), 243–247 (2009).

    MathSciNet  MATH  Google Scholar 

  30. McCarthy P.J.: Pseudo-replication: half samples. Rev. Int. Stat. Inst. 37, 239–263 (1969).

    MATH  Google Scholar 

  31. Mukerjee R.: Universal optimality of fractional factorial plans derivable from orthogonal arrays. Calcutta Stat. Assoc. Bull. 31, 63–68 (1982).

    MATH  Google Scholar 

  32. Nguyen M.V.M.: Some new constructions of strength 3 mixed orthogonal arrays. J. Stat. Plan. Inference 138, 220–233 (2008).

    MathSciNet  MATH  Google Scholar 

  33. Owen A.B.: Orthogonal arrays for computer experiments, integration and visualization. Stat. Sin. 2, 439–452 (1992).

    MathSciNet  MATH  Google Scholar 

  34. Pei D.: Message Authentication Codes. Press of Science and Technology of China, Hefei (2009).

    Google Scholar 

  35. Pang S., Wang J., Lin D.K.J., Liu M.Q.: Construction of mixed orthogonal arrays with high strength. Ann. Stat. 49(5), 2870–2884 (2021).

    MathSciNet  MATH  Google Scholar 

  36. Pang S., Zhang X., Lin X., Zhang Q.: Two and three-uniform states from irredundant orthogonal arrays. npj Quant. Inf. 5(52), 1–10 (2019).

    Google Scholar 

  37. Pang S., Zhang X., Zhang Q.: The Hamming distances of saturated asymmetrical orthogonal arrays with strength 2. Commun. Stat. Theory Methods 49(16), 3895–3910 (2019).

    MathSciNet  MATH  Google Scholar 

  38. Pang S., Xu W., Chen G., Wang J.: Construction of symmetric and asymmetric orthogonal arrays of strength \(t\) from orthogonal partition. J. Pure Appl. Math. 49(4), 663–669 (2018).

    MathSciNet  MATH  Google Scholar 

  39. Rao C.R.: Factorial experiments derivable from combinatorial arrangements of arrays. J. R. Stat. Soc. Suppl. 9, 128–139 (1947).

    MathSciNet  MATH  Google Scholar 

  40. Rao C.R.: Some combinatorial problems of arrays and applications to design of experiments. In: Srivastava J.N. (ed.) A Survey of Combinatorial Theory, pp. 349–359. North-Holland, Amsterdam (1973).

    Google Scholar 

  41. Schoen E.D., Eendebak P.T., Nguyen M.V.M.: Complete enumeration of pure-level and mixed-level orthogonal arrays. J. Comb. Des. 18(2), 123–140 (2010).

    MathSciNet  MATH  Google Scholar 

  42. Stinson D.R.: Combinatorial Designs: Constructions and Analysis. Springer-Verlag, New York (2004).

    MATH  Google Scholar 

  43. Stinson D.R.: Resilient functions and large sets of orthogonal arrays. Congr. Numer. 92, 105–110 (1993).

    MathSciNet  Google Scholar 

  44. Stinson D.R.: Some results on nonlinear zigzag functions. J. Comb. Math. Comb. Comput. 29, 127–138 (1999).

    MathSciNet  MATH  Google Scholar 

  45. Suen C., Das A., Dey A.: On the construction of asymmetric orthogonal arrays. Stat. Sin. 11, 241–260 (2001).

    MathSciNet  MATH  Google Scholar 

  46. Suen C., Dey A.: Construction of asymmetric orthogonal arrays through finite geometries. J. Stat. Plan. Inference 115, 623–635 (2003).

    MathSciNet  MATH  Google Scholar 

  47. Sun, R.: The existence of \(1\frac{1}{2}\)-designs and the constructions of orthogonal arrays. Master Dissertation, Hebei Normal University (2020)

  48. Tang G.H.: Modern Algebra. Tsinghua University Press, Beijing (2008).

    Google Scholar 

  49. Taguchi G.: System of Experimental Design, vol. 2. UNIPUB, White Plains (1987).

    MATH  Google Scholar 

  50. Todorow D.T.: Four mutually orthogonal Latin squares of order 14. J. Comb. Des. 20(8), 363–367 (2012).

    MathSciNet  Google Scholar 

  51. Wang X., Ji L., Li Y., Liang M.: Construction of augmented orthogonal arrays. J. Comb. Des. 26(11), 547–559 (2018).

    MathSciNet  MATH  Google Scholar 

  52. Williams, A.W., Probert, R.L.: A meausre for component interaction test coverage. In: Proceedings of ACS/IEEE International Conference on Computer Systems and Applications, pp. 301–211 (2001)

  53. Wu C.-F.J.: Balanced repeated replications based on mixed orthogonal arrays. Biometrika 78, 181–188 (1991).

    MathSciNet  Google Scholar 

  54. Xu H.: An algorithm for constructing orthogonal and nearly orthogonal arrays with mixed levels and small runs. Technometrics 44(4), 356–368 (2002).

    MathSciNet  Google Scholar 

  55. Yin J., Wang J., Ji L., Li Y.: On the existence of orthogonal arrays OA\((3,5,4n+2)\). J. Comb. Theory Ser. A 118, 270–276 (2011).

    MathSciNet  MATH  Google Scholar 

  56. Zhang T., Deng Q., Dey A.: Construction of asymmetric orthogonal arrays of strength three via a replacement method. J. Comb. Des. 25(8), 1–10 (2017).

    MathSciNet  MATH  Google Scholar 

  57. Zhang X., Pang S., Chen G.: Construction of orthogonal arrays of strength three by augmented difference schemes. Discret. Math. 345, 113041 (2022).

    MathSciNet  MATH  Google Scholar 

  58. Zhang Y., Lu Y., Pang S.: Orthogonal arrays obtained by orthogonal decomposition of projection matrices. Stat. Sin. 9, 595–604 (1999).

    MathSciNet  MATH  Google Scholar 

  59. Zhang Y., Lei J.: Multimagic rectangles based on large sets of orthogonal arrays. Discret. Math. 313(18), 1823–1831 (2013).

    MathSciNet  MATH  Google Scholar 

  60. Zhang Y., Chen K., Lei J.: Large sets of orthogonal arrays and multimagic squares. J. Comb. Des. 21(9), 390–403 (2013).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper was supported by the National Natural Science Foundation of China (Grant Nos. 11871417 and 11971104) and the Postgraduate Scientific Research Innovation Project of Henan Normal University (Grant No. YL202123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangzhou Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Data deposition information

Not applicable.

Additional information

Communicated by L. Teirlinck.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Niu, X. Constructions for new orthogonal arrays based on large sets of orthogonal arrays. Des. Codes Cryptogr. 91, 2605–2625 (2023). https://doi.org/10.1007/s10623-023-01217-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01217-5

Keywords

Mathematics Subject Classification

Navigation