Skip to main content
Log in

Improving the minimum distance bound of Trace Goppa codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper we prove that the class of Goppa codes whose Goppa polynomial is of the form \(g(x) = \textbf{Tr}_{{\mathbb {F}}_{q^{m}} \setminus {\mathbb {F}}_{q}}\) where \(\textbf{Tr}_{{\mathbb {F}}_{q^{m}} \setminus {\mathbb {F}}_{q}}\) is a trace polynomial from a field extension of degree \(m \ge 3\) has a better minimum distance than what the Goppa bound \(d \ge 2\deg (g(x))+1\) implies. This result is a significant improvement compared to the minimum distance of Trace Goppa codes over quadratic field extensions (the case \(m = 2\)). We present two different techniques to improve the minimum distance bound. For general p we prove that the Goppa code \(C(L, \textbf{Tr}_{{\mathbb {F}}_{q^{m}} \setminus {\mathbb {F}}_{q}})\) is equivalent to another Goppa code C(Mh) where \(\deg (h) > \deg (\textbf{Tr}_{{\mathbb {F}}_{q^{m}} \setminus {\mathbb {F}}_{q}})\). For \(p=2\) we use the fact that the values of \(\textbf{Tr}_{{\mathbb {F}}_{q^{m}} \setminus {\mathbb {F}}_{q}}\) are fixed under q–powers to find several new parity check equations which increase the known distance bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berlekamp E.: Goppa codes. IEEE Trans. Inf. Theory 19(5), 590–592 (1973). https://doi.org/10.1109/TIT.1973.1055088.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bezzateev S., Shekhunova N.A.: Chain of separable binary Goppa Codes and their minimal distance. IEEE Trans. Inf. Theory 54, 5773–5778 (2008). https://doi.org/10.1109/TIT.2008.2006442.

    Article  MathSciNet  MATH  Google Scholar 

  3. Canteaut A., Chabaud F.: A new algorithm for finding minimum-weight words in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Trans. Inf. Theory 44(1), 367–378 (1998). https://doi.org/10.1109/18.651067.

    Article  MathSciNet  MATH  Google Scholar 

  4. Couvreur A., Otmani A., Tillich J.-P.: New identities relating wild Goppa codes. Finite Fields Appl. 29, 178–197 (2014). https://doi.org/10.1016/j.ffa.2014.04.007.

    Article  MathSciNet  MATH  Google Scholar 

  5. Goppa V.D.: A new class of linear error-correcting codes. Probl. Peredach. Inf. 6(3), 24–30 (1970).

    MathSciNet  MATH  Google Scholar 

  6. Grassl M.: Bounds on the minimum distance of linear codes and quantum codes (2023). http://www.codetables.de. Accessed 15 Mar 2023.

  7. Loeloeian M., Conan J.: A [55,16,19] binary Goppa code (Corresp.). IEEE Trans. Inf. Theory 30(5), 773–773 (1984). https://doi.org/10.1109/TIT.1984.1056946.

    Article  MATH  Google Scholar 

  8. Sugiyama Y., Kasahara M., Hirasawa S., Namekawa T.: Further results on Goppa codes and their applications to constructing efficient binary codes. IEEE Trans. Inf. Theory 22(5), 518–526 (1976). https://doi.org/10.1109/TIT.1976.1055610.

    Article  MathSciNet  MATH  Google Scholar 

  9. Veron P.: Goppa codes and trace operator. IEEE Trans. Inf. Theory 44(1), 290–294 (1998). https://doi.org/10.1109/18.65104.

    Article  MathSciNet  MATH  Google Scholar 

  10. Véron P.: True dimension of some binary quadratic Trace Goppa Codes. Des. Codes Cryptogr. 24, 81–97 (2001). https://doi.org/10.1023/A:1011281431366.

    Article  MathSciNet  MATH  Google Scholar 

  11. Véron P.: Proof of conjectures on the true dimension of some binary Goppa Codes. Des. Codes Cryptogr. 36, 317–325 (2005). https://doi.org/10.1007/s10623-004-1722-4.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers, whose input and insight have improved this article.

Funding

The funder provided by Directorate for Mathematical and Physical Sciences (Grant No: NSF-DMS REU 1852171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Piñero-González.

Additional information

Communicated by J. W. P. Hirschfeld.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byrne, I., Dodson, N., Lynch, R. et al. Improving the minimum distance bound of Trace Goppa codes. Des. Codes Cryptogr. 91, 2649–2663 (2023). https://doi.org/10.1007/s10623-023-01216-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01216-6

Keywords

Mathematics Subject Classification

Navigation