Skip to main content
Log in

A recursive method for the construction and enumeration of self-orthogonal and self-dual codes over the quasi-Galois ring \(\mathbb {F}_{2^r}[u]/<u^e>\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we provide a recursive method to construct self-orthogonal and self-dual codes of the type \(\{k_1,k_2,\ldots ,k_e\}\) and length n over the quasi-Galois ring \(\mathbb {F}_{2^r}[u]/<u^e>\) from a self-orthogonal code of the same length n and dimension \(k_1+k_2+\cdots +k_{\lceil \frac{e}{2}\rceil }\) over \(\mathbb {F}_{2^r}\) and vice versa, where \(\mathbb {F}_{2^r}\) is the finite field of order \(2^r,\) \(n \ge 1, \) \(e\ge 2\) are integers, \(\lceil \frac{e}{2}\rceil \) is the smallest integer greater than or equal to \(\frac{e}{2},\) and \(k_1,k_2,\ldots ,k_e\) are non-negative integers satisfying \(k_1 \le n-(k_1+k_2+\cdots +k_e)\) and \(k_i=k_{e-i+2}\) for \(2 \le i \le e.\) We further apply this recursive method to provide explicit enumeration formulae for self-orthogonal and self-dual codes of an arbitrary length over the ring \(\mathbb {F}_{2^r}[u]/<u^e>\). With the help of these enumeration formulae and by carrying out computations in the Magma Computational Algebra system, we classify all self-orthogonal and self-dual codes of lengths 2, 3, 4, 5 over the ring \(\mathbb {F}_2[u]/<u^3>\) and of lengths 2, 3, 4 over the ring \(\mathbb {F}_4[u]/<u^2>\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachoc C., Gaborit P.: Designs and self-dual codes with long shadows. J. Combin. Theory 105(1), 15–34 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  2. Betty R.A., Munemasa A.: A mass formula for self-orthogonal codes over \(\mathbb{Z} _{p^2}\). J. Combin. Inf. Syst. Sci. 34, 51–66 (2009).

    MATH  Google Scholar 

  3. Betty R.A., Nemenzo F., Vasquez T.L.: Mass formula for self-dual codes over \(\mathbb{F} _q+u\mathbb{F} _q+u^2\mathbb{F} _q\). J. Appl. Math. Comput. 57(1), 523–546 (2018).

    Article  MathSciNet  Google Scholar 

  4. Bonnecaze A., Sole P., Calderbank A.R.: Quaternary quadratic residue codes and unimodular lattices. IEEE Trans. Inf. Theory 41(2), 366–377 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouyuklieva S., Varbanov Z.: Some connections between self-dual codes, combinatorial designs and secret sharing schemes. Adv. Math. Commun. 5(2), 191–198 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  6. Calderbank A.R., Hammons A.R., Kumar P.V., Sloane N.J.A., Sole P.: A linear construction for certain Kerdock, and Preparata codes. Bull. Am. Math. Soc. 29(2), 218–222 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  7. Calderbank A.R., Hammons A.R., Kumar P.V., Sloane N.J.A., Sole P.: The \(\mathbb{Z} _4\)-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994).

    Article  MATH  Google Scholar 

  8. Dougherty S.T., Kim J.L., Liu H.: Constructions of self-dual codes over finite commutative chain rings. Int. J. Inf. Coding Theory 1(2), 171–190 (2010).

    MathSciNet  MATH  Google Scholar 

  9. Dougherty S.T., Mesnager, S., Sol\(\acute{e}\), P.: Secret-sharing schemes based on self-dual codes. In: Proceedings of the IEEE Information Theory workshop, pp. 338-342 (2008)

  10. Gaborit P.: Mass formula for self-dual codes over \(\mathbb{Z} _{4}\) and \(\mathbb{F} _q+u\mathbb{F} _q\) rings. IEEE Trans. Inf. Theory 42(4), 1222–1228 (1996).

    Article  MathSciNet  Google Scholar 

  11. Gaborit P.: Construction of new extremal unimodular lattices. Eur. J. Combin. 25(4), 549–564 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  12. Galvez L.E., Betty R.A., Nemenzo F.: Self-orthogonal codes over \(\mathbb{F} _q+u\mathbb{F} _q\) and \(\mathbb{F} _q+u\mathbb{F} _q+u^2\mathbb{F} _q\). Eur. J. Pure Appl. Math. 13(4), 873–892 (2020).

    Article  MathSciNet  Google Scholar 

  13. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge Univversity Press, Cambridge (2003).

    Book  MATH  Google Scholar 

  14. Huffman W.C.: On the classification and enumeration of self-dual codes. Finite Fields Appl. 11(3), 451–490 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  15. Kennedy G.T., Pless V.: On designs and formally self-dual codes. Des. Codes Cryptogr. 4(1), 43–55 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  16. Nagata K., Nemenzo F., Wada H.: Mass formula and structure of self-dual codes over \(\mathbb{Z} _{2^s}\). Des. Codes Cryptogr. 67(3), 293–316 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  17. Nechaev A.A.: Kerdock code in a cyclic form. Discret. Math. Appl. 1(4), 365–384 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  18. Norton G.H., Salagean A.: On the structure of linear and cyclic codes over a finite chain ring. AAECC 10(6), 489–506 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  19. Pless V.: On the uniqueness of Golay codes. J. Combin. Theory 5(3), 215–228 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  20. Yadav M., Sharma A.: Mass formulae for Euclidean self-orthogonal and self-dual codes over finite commutative chain rings. Discret. Math. 344(1), 1–24 (2021).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Sharma.

Additional information

Communicated by T. Helleseth.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research support by CSIR, India, under the Grant No. 09/1117(0006)/2019-EMR-I, is gratefully acknowledged. Research support by IHUB-ANUBHUTI-IIITD FOUNDATION set up under the NM-ICPS scheme of the Department of Science and Technology, India, under Grant no. IHUB Anubhuti/Project Grant/12, is gratefully acknowledged.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, M., Sharma, A. A recursive method for the construction and enumeration of self-orthogonal and self-dual codes over the quasi-Galois ring \(\mathbb {F}_{2^r}[u]/<u^e>\). Des. Codes Cryptogr. 91, 1973–2003 (2023). https://doi.org/10.1007/s10623-023-01185-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01185-w

Keywords

Mathematics Subject Classification

Navigation