Skip to main content
Log in

The cycle structure of a class of permutation polynomials

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we study the cycle structure of a permutation polynomial of the form \(f(x)=x^{(q+1)s_1}(x+x^{q})^{s_2}+x^{s_3}\) over \({\mathbb {F}}_{q^2}\), where \((s_1,s_2,s_3)\in \{(q^2-2,3,q), (1,q^2-2,1), (1,q^2-1,2), (1,2,4)\}\) and q is even. By calculating the sum of all elements in each cycle of a fraction polynomial \(\frac{x}{x^3+x^2+1}\) or a linearized polynomial \(x^{2^e}+x^2+x\) with \(e\ge 0\), the cycle structure of f(x) over \({\mathbb {F}}_{q^2}\) in the first three cases, that is, \((s_1,s_2,s_3)=\{(q^2-2,3,q), (1,q^2-2,1)\) or \((1,q^2-1,2)\}\), is characterized. For the case \((s_1,s_2,s_3)=(1,2,4)\), we give the cycle structure of f(x) over \({\mathbb {F}}_{q^2}\) for \(q={2^{{2}^{k}}}\) with a positive integer k. For \(q=2^{{2}^{k}_p}\) with an odd prime p, it needs more techniques to determine the cycle structure of f(x). We only give its cycle length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Ahmad S.: Cycle structure of automorphisms of finite cyclic groups. J. Comb. Theory 6(4), 370–374 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  2. Akbary A., Ghioca D., Wang Q.: On construction permutations of finite fields. Finite Fields Appl. 17(1), 51–67 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  3. Berlekamp E.R., Rumsey H., Solomon G.: On the solution of algebraic equations over finite fields. Inf. Control 10(6), 553–564 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  4. Capaverde J., Masuda A.M., Rodrigues V.M.: Rédei permutations with cycles of the same length. Des. Codes Cryptogr. 88, 2561–2579 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlitz L.: Permutations in finite fields. Acta Sci. Math. 24, 196–203 (1963).

    MathSciNet  MATH  Google Scholar 

  6. Cepak N., Charpin P., Pasalic E.: Permutation via linear translators. Finite Fields Appl. 45, 19–42 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  7. Çeşmelioğlu A., Meidl W., Topuzoğlu A.: On the cycle structure of permutation polynomials. Finite Fields Appl. 14(3), 593–614 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen Y., Wang L., Zhu S.: On the constructions of \(n\)-cycle permutations. Finite Fields Appl. 73, 101847 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  9. Friedlander R.J., Gordon B., Tannenbaum P.: Partitions of groups and complete mappings. Pac. J. Math. 92(2), 283–293 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  10. Gerike D.: Determining the cycle structure of permutation polynomials of shape \(X^t+\gamma {\rm Tr}(X^k)\), Ph.D. Dissertation, Otto-von-Guericke University of Magdeburg (2020).

  11. Gerike D., Kyureghyan G.M.: Permutations on finite fields with invariant cycle structure on lines. Des. Codes Cryptogr. 88, 1723–1740 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  12. Golomb S.W.: Shift Register Sequences. Holden-Day Inc, Laguna Hills (1967).

    MATH  Google Scholar 

  13. Golomb S.W., Gong G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, New York (2005).

    Book  MATH  Google Scholar 

  14. Lachaud G., Wolfmann J.: The weights of the orthogonals of the extended quadratic binary Goppa codes. IEEE Trans. Inf. Theory 36, 686–692 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  15. Lee J.: Key alternating ciphers based on involutions. Des. Codes Cryptogr. 86(5), 955–988 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  16. Lidl R., Mullen G.L.: Cycle structure of Dickson permutation polynomials. Math. J. Okayama Univ. 33(33), 164–170 (1991).

    MathSciNet  MATH  Google Scholar 

  17. Mullen G.L., Panario D.: Handbook of Finite Fields. Taylor-Francis, Boca Raton (2013).

    Book  MATH  Google Scholar 

  18. Mullen G.L., Vaughan T.P.: Cycles of linear permutations over a finite field. Linear Algebra Appl. 108, 63–82 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  19. Ore O.: On a special class of polynomials. Trans. Am. Math. Soc. 35, 559–584 (1933).

    Article  MathSciNet  MATH  Google Scholar 

  20. Ore O.: Contributions to the theory of finite fields. Trans. Am. Math. Soc. 36, 243–274 (1934).

    Article  MathSciNet  MATH  Google Scholar 

  21. Park Y.H., Lee J.B.: Permutation polynomials and group permutation polynomials. Bull. Aust. Math. Soc. 63, 67–74 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  22. Rubio I.M., Corrada C.J.: Cyclic decomposition of permutations of finite fields obtained using monomials, Finite Fields and Applications, LNCS 2948 254-261, Springer-Verlag (2004).

  23. Rubio I.M., Mullen G.L., Corrada C., Castro F.N.: Dickson permutation polynomials that decompose in cycles of the same length. Contemp. Math. 461, 229–240 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  24. Sakzad A., Sadeghi M.R., Panario D.: Cycle structure of permutation functions over finite fields and their applications. Adv. Math. Commun. 6(3), 347–361 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  25. Tu Z., Zeng X., Li C., Helleseth T.: A class of new permutation trinomials. Finite Fields Appl. 50, 178–195 (2018).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank professor Xiang-Dong Hou for his helpful suggestion. The work was supported by the National Nature Science Foundation of China (NSFC) under Grant Nos. 62072161 and 12101207 and by the Application Foundation Frontier Project of Wuhan Science and Technology Bureau under Grant No. 2020010601012189.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyong Zeng.

Additional information

Communicated by G. Kyureghyan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, D., Zeng, X., Li, L. et al. The cycle structure of a class of permutation polynomials. Des. Codes Cryptogr. 91, 1373–1400 (2023). https://doi.org/10.1007/s10623-022-01155-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01155-8

Keywords

Mathematics Subject Classification

Navigation