Skip to main content
Log in

On inverses of permutation polynomials of the form \(x\left( x^{s} -a\right) ^{(q^m-1)/s}\) over \(\mathbb {F}_{q^n}\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The inverse of a class of permutation polynomials (PPs) of the form \(x(x^{s} -a)^{(q^m - 1)/s}\) over \(\mathbb {F}_{q^n}\) is given. More simplified expressions of some subclasses of this family are presented, such as \(x(x^{q-1} - a)^{q+1}\) and \(x(x^{q+1} - a)^{q-1}\) over \(\mathbb {F}_{q^3}\), \(x(x^2 -a)^3\) and \(x(x^3 -a)^2\) over \(\mathbb {F}_{7^n}\). These expressions and some known results solve the problem of determining the inverses of all PPs of degree 7 over finite fields. In addition, an explicit criteria for \(x(x^{s} -a)^{(q - 1)/s}\) to be an involution of \(\mathbb {F}_{q}\) is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akbary A., Wang Q.: On polynomials of the form \(x^rf(x^{(q-1)/l})\). Int. J. Math. Math. Sci. 2007, 1–7 (2007). https://doi.org/10.1155/2007/23408.

    Article  MATH  Google Scholar 

  2. Akbary A., Ghioca D., Wang Q.: On constructing permutations of finite fields. Finite Fields Appl. 17, 51–67 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartoli D., Timpanella M.: A family of permutation trinomials over \(\mathbb{F} _{q^2}\). Finite Fields Appl. 70, 101781 (2021).

    Article  MATH  Google Scholar 

  4. Bartoli D., Giulietti M., Quoos L., Zini G.: Complete permutation polynomials from exceptional polynomials. J. Number Theory 176, 46–66 (2017). https://doi.org/10.1016/j.jnt.2016.12.016.

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao X., Hou X.-D., Mi J., Xu S.: More permutation polynomials with Niho exponents which permute \(\mathbb{F} _{q^2}\). Finite Fields Appl. 62, 101626 (2020). https://doi.org/10.1016/j.ffa.2019.101626.

    Article  MathSciNet  MATH  Google Scholar 

  6. Charpin P., Mesnager S., Sarkar S.: Dickson polynomials that are involutions. In: Contemporary Developments in Finite Fields and Their Applications, pp. 22–47. World Scientific, Singapore (2016).

  7. Charpin P., Mesnager S., Sarkar S.: On involutions of finite fields. In: Proc. IEEE Int. Symp. Inf. Theory, Hong-Kong, pp. 1–5 (2015).

  8. Charpin P., Mesnager S., Sarkar S.: Involutions over the Galois Field \(\mathbb{F} _{2^{n}}\). IEEE Trans. Inf. Theory 62(4), 2266–2276 (2016).

    Article  MATH  Google Scholar 

  9. Coulter R., Henderson M.: A note on the roots of trinomials over a finite field. Bull. Aust. Math. Soc. 69, 429–432 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  10. Dickson L.E.: The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group. Part I. Ann. Math. 11, 65–120 (1896).

    Article  MathSciNet  MATH  Google Scholar 

  11. Fan X.: A classification of permutation polynomials of degree 7 over finite fields. Finite Fields Appl. 59, 1–21 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  12. Fan X.: Permutation polynomials of degree 8 over finite fields of characteristic 2. Finite Fields Appl. 64, 101662 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan X.: Permutation polynomials of degree 8 over finite fields of odd characteristic. Bull. Aust. Math. Soc. 101(1), 40–55 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  14. Fried M.D., Guralnick R., Saxl J.: Schur covers and Carlitz’s conjecture. Israel J. Math. 82, 175–225 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  15. Fu S., Feng X.: Involutory differentially 4-uniform permutations from known constructions. Des. Codes Cryptogr. 87, 31–56 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  16. Gerike D., Kyureghyan G.M.: Results on permutation polynomials of shape \(x^t + \gamma \rm Tr_{q^n/q}(x^d)\). In: Schmidt K.-U., Winterhof A. (eds.) Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications, pp. 67–78 (2019). https://doi.org/10.1515/9783110642094-005

  17. Gerike D., Kyureghyan G.M.: Permutations on finite fields with invariant cycle structure on lines. Des. Codes Cryptogr. 88, 1723–1740 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  18. Hou X.-D., Tu Z., Zeng X.: Determination of a class of permutation trinomials in characteristic three. Finite Fields Appl. 61, 101596 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  19. Li J., Chandler D.B., Xiang Q.: Permutation polynomials of degree \(6\) or \(7\) over finite fields of characteristic \(2\). Finite Fields Appl. 16, 406–419 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  20. Li K., Qu L., Wang Q.: Compositional inverses of permutation polynomials of the form \(x^rh(x^s)\) over finite fields. Cryptogr. Commun. 11, 279–298 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  21. Li K., Qu L., Li C., Chen H.: On a conjecture about a class of permutation quadrinomials. Finite Fields Appl. 66, 101690 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  22. Lidl R., Niederreiter H.: Finite Fields. Cambridge Univ. Press, Cambridge (1997).

    MATH  Google Scholar 

  23. Müller P.: A Weil-bound free proof of Schur’s conjecture. Finite Fields Appl. 3, 25–32 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  24. Niu T., Li K., Qu L., Wang Q.: New constructions of involutions over finite fields. Cryptogr. Commun. 12, 165–185 (2020). https://doi.org/10.1007/s12095-019-00386-2.

    Article  MathSciNet  MATH  Google Scholar 

  25. Niu T., Li K., Qu L., Wang Q.: Finding compositional inverses of permutations from the AGW criterion. IEEE Trans. Inf. Theory 67(8), 4975–4985 (2021). https://doi.org/10.1109/TIT.2021.3089145.

    Article  MathSciNet  MATH  Google Scholar 

  26. Pasalic E., Zhang F., Kudin S., Wei Y.: Vectorial bent functions weakly/strongly outside the completed Maiorana–McFarland class. Discret. Appl. Math. 294, 138–151 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  27. Shallue C.J., Wanless I.M.: Permutation polynomials and orthomorphism polynomials of degree six. Finite Fields Appl. 20, 84–92 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang Q.: Polynomials over finite fields: an index approach. In: Schmidt K.-U., Winterhof A. (eds.) Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications, pp. 319–346 (2019). https://doi.org/10.1515/9783110642094-015.

  29. Wang Q.: On inverse permutation polynomials. Finite Fields Appl. 15, 207–213 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang Q.: A note on inverses of cyclotomic mapping permutation polynomials over finite fields. Finite Fields Appl. 45, 422–427 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, B.: The compositional inverses of linearized permutation binomials over finite fields. arXiv:1311.2154v1. (2013).

  32. Xu X., Zeng X., Zhang S.: Regular complete permutation polynomials over \({\mathbb{F}}_{2^{n}}\). Des. Codes Cryptogr. 90, 545–575 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  33. Zheng Y., Yu Y., Zhang Y., Pei D.: Piecewise constructions of inverses of cyclotomic mapping permutation polynomials. Finite Fields Appl. 40, 1–9 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  34. Zheng D., Yuan M., Li N., Hu L., Zeng X.: Constructions of involutions over finite fields. IEEE Trans. Inf. Theory 65(12), 7876–7883 (2019). https://doi.org/10.1109/TIT.2019.2919511.

    Article  MathSciNet  MATH  Google Scholar 

  35. Zheng Y., Wang Q., Wei W.: On inverses of permutation polynomials of small degree over finite fields. IEEE Trans. Inf. Theory 66(2), 914–922 (2020). https://doi.org/10.1109/TIT.2019.2939113.

    Article  MathSciNet  MATH  Google Scholar 

  36. Zheng L., Kan H., Peng J., Tang D.: Two classes of permutation trinomials with niho exponents. Finite Fields Appl. 70, 101790 (2021).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for many useful suggestions. This work was partially supported by the Natural Science Foundation of Shandong (No. ZR2021MA061), the Guangdong Basic and Applied Basic Research Foundation (Nos. 2021A1515011954, 2021A1515011904), the National Key R &D Program of China (No. 2021YFB3100200), and the National Natural Science Foundation of China (No. 62072222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingchen Zhou.

Additional information

Communicated by K.-U. Schmidt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Yu, Y., Zha, Z. et al. On inverses of permutation polynomials of the form \(x\left( x^{s} -a\right) ^{(q^m-1)/s}\) over \(\mathbb {F}_{q^n}\). Des. Codes Cryptogr. 91, 1165–1181 (2023). https://doi.org/10.1007/s10623-022-01142-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01142-z

Keywords

MSC Classification

Navigation