Skip to main content
Log in

The linearity of Carlet’s Gray image of linear codes over \({\mathbb {Z}}_{8}\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A \({\mathbb {Z}}_{2^s}\)-additive code \( {\mathcal {C}} \) of length n is a subgroup of \({\mathbb {Z}}_{2^s}^n \). Carlet (IEEE Trans Inf Theory 44:1543–1547, 1998) introduced a Gray map \(\Phi \) (Carlet’s Gray map) on \({\mathbb {Z}}_{2^s}\) and Tapia-Recillas and Vega (SIAM J Discret Math 17:103–113, 2003) have been shown that \(\Phi ({\mathcal {C}})\) is a binary linear code if and only if for every \({\mathbf {u}}, {\mathbf {v}}\in {\mathcal {C}}\), \(2({\mathbf {u}}\odot {\mathbf {v}})\in {\mathcal {C}}\), which their number is \({\mid {\mathcal {C}}\mid }^2 -\left( {\begin{array}{c}\mid {\mathcal {C}}\mid \\ 2\end{array}}\right) \). Let \( {\mathcal {C}} \) be a linear code over \({\mathbb {Z}}_8\) of type \(\{\delta _{0}, \delta _{1}, \delta _{2}\}\). In this paper, by using the rows of the generator matrix (in standard form) of \({\mathcal {C}}\), we introduce a set \({\mathcal {S}}\) with \(\mid {\mathcal {S}} \mid \le \frac{\delta _{0}(\delta _{0}+3)}{2}+\delta _{1}\) and show that \(\Phi ({\mathcal {C}})\) is linear if and only if for every \({\mathbf {u}}, {\mathbf {v}}\in {\mathcal {S}}\), \(2({\mathbf {u}}\odot {\mathbf {v}})\in {\mathcal {C}}\). The results show that for a linear code \(\mathcal{C}\) over \({\mathbb {Z}}_8\) calculations to check the linearity of \(\Phi ({\mathcal {C}})\) are less than Tapia-Recillas and Vega’s method. In addition, for a cyclic code of odd length over \({\mathbb {Z}}_8\), a condition on the generator polynomial of this code is given which its Carlet’s Gray image is linear. Also, as a result, we show that the Carlet’s Gray image of a quadratic residue code over \({\mathbb {Z}}_8\) is not linear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arzaki M., Suprijanto D.: Note on elementary constructions of self-dual codes over \({\mathbb{Z}}_8\). Int. Math. Forum 6(16), 785–794 (2011).

    MathSciNet  MATH  Google Scholar 

  2. Calderbank A.R., Sloane N.J.A.: Modular and p-adic cyclic codes. Des. Codes Cryptogr. 6(1), 21–35 (1995).

    Article  MathSciNet  Google Scholar 

  3. Carlet C.: \({\mathbb{Z}}_{2^k}\)-Linear Codes. IEEE Trans. Inf. Theory 44(4), 1543–1547 (1998).

    Article  Google Scholar 

  4. Chiu M.H., Yau S.T., Yu Y.: \({\mathbb{Z}}_8\)-cyclic codes and quadratic residue codes. Adv. Appl. Math. 25(1), 12–33 (2000).

    Article  MathSciNet  Google Scholar 

  5. Dougherty S.T., Fernández-órdoba C.: Codes over \({\mathbb{Z}}_{2^k}\), gray map and self-dual codes. Adv. Math. Commun. 5(4), 571–588 (2011).

    Article  MathSciNet  Google Scholar 

  6. Dougherty S.T., Gulliver T.A., Wong J.: Self-dual codes over \({\mathbb{Z}}_8\) and \({\mathbb{Z}}_9\). Des. Codes Cryptogr. 1, 235–249 (2006).

    Article  Google Scholar 

  7. Fern\(\acute{a}\)ndez-C\(\acute{o}\)rdoba C., Vela C., Villanueva M.: On \({\mathbb{Z}}_{2^s}\)-linear Hadamard codes, kernel and partial classification, Des. Codes Cryptogr. 87, 417–435 (2019).

  8. Fern\(\acute{a}\)ndez-C\(\acute{o}\)rdoba C., Vela C., Villanueva M.: On \({\mathbb{Z}}_8\)-linear Hadamard codes, rank and classification, IEEE Trans. Inf. Theory 66(2), 970–982 (2020).

  9. Gupta M.K., Bhandari M.C., Lal A.K.: On linear codes over \({\mathbb{Z}}_{2^s}\). Des. Codes Cryptogr. 36(3), 227–244 (2005).

    Article  MathSciNet  Google Scholar 

  10. Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Sol\(\acute{e}\) P.: The \({\mathbb{Z}}_{4}\)-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inf. Theory 40(2), 301–319 (1994).

  11. Jitman S., Udomkavanich P.: The gray image of codes over finite chain rings. Int. J. Contemp. Math. Sciences 5(10), 449–458 (2010).

    MathSciNet  MATH  Google Scholar 

  12. Kanwar P., L\(\acute{o}\)pez-Permouth S.R.: Cyclic codes over the integers modulo \(p^m\), Finite Fields Appl. 3, 334–352 (1997).

  13. Krotov D.S.: On \({\mathbb{Z}}_{2^k}\)-dual binary codes. IEEE Trans. Inf. Theory 53(4), 1532–1537 (2007).

    Article  Google Scholar 

  14. MacWilliams F.J., Sloane N.J.A.: The Theory of Error Correcting Codes. North-Holland, Amsterdam (1977).

    MATH  Google Scholar 

  15. Qain J.F., Ma W., Wang X.: On the Gray image of cyclic codes over finite chain rings, IEICE Trans. Electron. EA91-A, 2685–2687 (2008).

  16. Tapia-Recillas H., Vega G.: On \({\mathbb{Z}}_{2^k}\)-linear and quaternary codes. SIAM J. Discret. Math. 17(1), 103–113 (2003).

    Article  Google Scholar 

  17. Wan Z.X.: Quaternary Codes. World Scientific, Singapore (1997).

    Book  Google Scholar 

  18. Wolfmann J.: Binary images of cyclic codes over \({\mathbb{Z}}_{4}\). IEEE Trans. Inf. Theory 47(5), 1773–1779 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their valuable comments, which enabled them to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Samei.

Additional information

Communicated by C. Carlet.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eyvazi, H., Samei, K. & Savari, B. The linearity of Carlet’s Gray image of linear codes over \({\mathbb {Z}}_{8}\). Des. Codes Cryptogr. 90, 2361–2373 (2022). https://doi.org/10.1007/s10623-022-01084-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01084-6

Keywords

Mathematics Subject Classification

Navigation