Skip to main content
Log in

Strongly regular configurations

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We study combinatorial configurations with the associated point and line graphs being strongly regular. Examples not belonging to known classes such as partial geometries and their generalizations or elliptic semiplanes are constructed. Necessary existence conditions are proved and a table of feasible parameters of such configurations with at most 200 points is presented. Non-existence of some configurations with feasible parameters is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We will always use the term line graph in this sense, and not in the sense of graph theory (the line graph L(G) of a graph G).

References

  1. Baker R.D.: An elliptic semiplane. J. Comb. Theory Ser. A 25(2), 193–195 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  2. Betten A., Brinkmann G., Pisanski T.: Counting symmetric configurations \(v_3\). Discret. Appl. Math. 99(1–3), 331–338 (2000).

    MATH  Google Scholar 

  3. Bose R.C.: Strongly regular graphs, partial geometries and partially balanced designs. Pac. J. Math. 13, 389–419 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  4. Brouwer A.E.: Parameters of strongly regular graphs. Accessed 7 April (2021). https://www.win.tue.nl/~aeb/graphs/srg/srgtab.html.

  5. Brouwer A.E., Cohen A.M., Neumaier A.: Distance-Regular Graphs. Springer, Berlin (1989).

    Book  MATH  Google Scholar 

  6. Brouwer A.E., Haemers W.H., Tonchev V.D.: Embedding partial geometries in Steiner designs. In: Geometry, combinatorial designs and related structures (Spetses, 1996), London Math. Soc. Lecture Note Ser., vol. 245, pp. 33–41. Cambridge Univ. Press, Cambridge (1997).

  7. Brouwer A.E., Koolen J.H., Klin M.H.: A root graph that is locally the line graph of the Petersen graph. Discret. Math. 264(1–3), 13–24 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  8. Brouwer A.E., Van Maldeghem H.: Strongly regular graphs. accessed 7 April (2021). https://homepages.cwi.nl/~aeb/math/srg/rk3/srgw.pdf.

  9. Bruck R.H.: Finite nets. I. Numerical invariants. Can. J. Math. 3, 94–107 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  10. Bruck R.H.: Finite nets. II. Uniqueness and imbedding. Pac. J. Math. 13, 421–457 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  11. Buratti M., Stinson D.R.: New results on modular Golomb rulers, optical orthogonal codes and related structures. Ars Math. Contemp. 20(1), 1–27 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  12. Cohen A.M.: A new partial geometry with parameters \((s, t,\alpha ) = (7,8,4)\). J. Geom. 16, 181–186 (1981).

    MathSciNet  MATH  Google Scholar 

  13. Coolsaet K., Degraer J., Spence E.: The strongly regular \((45,12,3,3)\) graphs. Electron. J. Comb. 13(1), 32 (2006).

    MathSciNet  Google Scholar 

  14. Crnković D., Švob A., Tonchev V.D.: Strongly regular graphs with parameters \((81,30,9,12)\) and a new partial geometry. J. Algebraic Comb. 53(1), 253–261 (2021).

    MATH  Google Scholar 

  15. Debroey I., Thas J.A.: On semipartial geometries. J. Comb. Theory A 25, 242–250 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  16. De Clerck F.: Partial and semipartial geometries: an update. Discret. Math. 267(1–3), 75–86 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  17. De Clerck F., Delanote M.: Partial geometries and the triality quadric. J. Geom. 68, 34–47 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  18. De Clerck F., Dye R.H., Thas J.A.: An infinite class of partial geometries associated with the hyperbolic quadric in \(PG(4n-1,2)\). Eur. J. Comb. 1(4), 323–326 (1980).

    MathSciNet  MATH  Google Scholar 

  19. De Clerck F., Van Maldeghem H.: On linear representations of \((\alpha ,\beta )\)-geometries. Eur. J. Comb. 15(1), 3–11 (1994).

    MathSciNet  MATH  Google Scholar 

  20. De Clerck F., Van Maldeghem H.: Some Classes of Rank \(2\) Geometries, Handbook of Incidence Geomet, pp. 433–475. North-Holland, Amsterdam (1995).

    MATH  Google Scholar 

  21. Dembowski P.: Finite Geometries. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Springer, New York (1968).

  22. Funk M.: Cyclic difference sets of positive deficiency. Bull. Inst. Comb. Appl. 53, 47–56 (2008).

    MathSciNet  MATH  Google Scholar 

  23. Godsil C., Royle G.: Algebraic Graph Theory. Springer, New York (2001).

    Book  MATH  Google Scholar 

  24. Golemac A., Mandić J., Vučičić T.: New regular partial difference sets and strongly regular graphs with parameters \((96,20,4,4)\) and \((96,19,2,4)\). Electron. J. Comb. 13(1), 88 (2006).

    MATH  Google Scholar 

  25. Gropp H.: On the existence and nonexistence of configurations \(n_k\). J. Comb. Inf. Syst. Sci. 15(1–4), 34–48 (1990).

    MATH  Google Scholar 

  26. Grünbaum B.: Configurations of Points and Lines. American Mathematical Society, Providence (2009).

    Book  MATH  Google Scholar 

  27. Hamilton N., Mathon R.: Strongly regular \((\alpha ,\beta )\)-geometries. J. Comb. Theory Ser. A 95(2), 234–250 (2001).

    MathSciNet  MATH  Google Scholar 

  28. Hoffman A.J., Singleton R.R.: On Moore graphs with diameters \(2\) and \(3\). IBM J. Res. Dev. 4, 497–504 (1960).

    MathSciNet  MATH  Google Scholar 

  29. Jungnickel D., Tonchev V.D.: Polarities, quasi-symmetric designs, and Hamada’s conjecture. Des. Codes Cryptogr. 51(2), 131–140 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  30. Krčadinac V.: Non-embeddable quasi-residual quasi-symmetric designs. Appl. Algebra Eng. Commun. Comput. (2020). https://doi.org/10.1007/s00200-020-00463-7.

    Article  MathSciNet  MATH  Google Scholar 

  31. Krčadinac V.: A new partial geometry \(pg(5,5,2)\). J. Comb. Theory Ser. A 183, 105493 (2021). https://doi.org/10.1016/j.jcta.2021.105493.

    MathSciNet  MATH  Google Scholar 

  32. Krčadinac V., Vlahović Kruc R.: Quasi-symmetric designs on \(56\) points. Adv. Math. Commun. 15(4), 633–646 (2021). https://doi.org/10.3934/amc.2020086.

    MathSciNet  MATH  Google Scholar 

  33. Mathon R.: Divisible semiplanes. In: Colbourn C.J., Dinitz J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 729–731. Chapman & Hall/CRC, Boca Raton (2007).

    Google Scholar 

  34. Mathon R., Street A.P.: Overlarge sets and partial geometries. J. Geom. 60(1–2), 85–104 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  35. McKay B.D., Piperno A.: Practical graph isomorphism, II. J. Symbolic Comput. 60, 94–112 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  36. McKay B.D., Spence E.: Classification of regular two-graphs on \(36\) and \(38\) vertices. Australas. J. Comb. 24, 293–300 (2001).

    MathSciNet  MATH  Google Scholar 

  37. Mendelsohn N.S., Padmanabhan R., Wolk B.: Planar projective configurations I. Note Mat. 7(1), 91–112 (1987).

    MathSciNet  MATH  Google Scholar 

  38. Niskanen S., Östergård P.R.J.: Cliquer user’s guide, version 1.0, Communications Laboratory, Helsinki University of Technology, Espoo, Finland, Tech. Rep. T48 (2003).

  39. Paulus A.J.L.: Conference matrices and graphs of order \(26\), Technische Hogeschool Eindhoven, report WSK 73/06, Eindhoven, p. 89 (1973).

  40. Payne S.E., Thas J.A.: Finite Generalized Quadrangles, 2nd edn European Mathematical Society, Zürich (2009).

    Book  MATH  Google Scholar 

  41. Pisanski T., Servatius B.: Configurations from a Graphical Viewpoint. Birkhäuser/Springer, New York (2013).

    Book  MATH  Google Scholar 

  42. Rozenfel’d M.Z.: The construction and properties of certain classes of strongly regular graphs. Uspehi Mat. Nauk 28(3), 197–198 (1973) (in Russian).

    MathSciNet  Google Scholar 

  43. Shrikhande S.S.: The uniqueness of the \(L_2\) association scheme. Ann. Math. Stat. 30, 781–798 (1959).

    MATH  Google Scholar 

  44. Spence E.: Strongly Regular Graphs on at most \(64\) vertices. Accessed 7 April (2021). http://www.maths.gla.ac.uk/~es/srgraphs.php.

  45. The GAP Group, GAP—Groups, Algorithms, and Programming, Version 4.11.0 (2020). http://www.gap-system.org.

  46. van Lint J.H., Schrijver A.: Construction of strongly regular graphs, two-weight codes and partial geometries by finite fields. Combinatorica 1(1), 63–73 (1981).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vedran Krčadinac.

Additional information

Communicated by D. Ghinelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Vedran Krčadinac was supported by the Croatian Science Foundation under the Projects 6732 and 9752.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, M., Funk, M., Krčadinac, V. et al. Strongly regular configurations. Des. Codes Cryptogr. 90, 1881–1897 (2022). https://doi.org/10.1007/s10623-022-01080-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01080-w

Keywords

Mathematics Subject Classification

Navigation