Skip to main content
Log in

The Modular Subset-Sum Problem and the size of deletion correcting codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, using some results on the deletion correcting codes, we give an equivalent form of the Modular Subset-Sum Problem which is of significant importance in computer science and (quantum) cryptography. We also, using Ramanujan sums and their properties, give an explicit formula for the size of the Levenshtein code which has found many interesting applications, for examples, in studying DNA-based data storage and distributed message synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ajtai M.: Generating hard instances of lattice problems (extended abstract), In: Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing (STOC 1996), pp. 99–108 (1996).

  2. AlAziz Md.M., Alhadidi D., Mohammed N.: Secure approximation of edit distance on genomic data. BMC Med. Genom. 10, Article Number: 41 (2017).

  3. Axiotis K., Backurs A., Jin C., Tzamos C., Wu H.: Fast modular subset sum using linear sketching. In: Proceedings of the thirtieth annual ACM-SIAM symposium on discrete algorithms (SODA 2019), pp. 58–69 (2019).

  4. Balandraud E., Girard B., Griffiths S., Hamidoune Y.: Subset sums in abelian groups. Eur. J. Combin. 34, 1269–1286 (2013).

    Article  MathSciNet  Google Scholar 

  5. Bansal N., Garg S., Nederlof J., Vyas N.: Faster space-efficient algorithms for subset sum, \(k\)-sum, and related problems. SIAM J. Comput. 47, 1755–1777 (2018).

  6. Bellman R.: Notes on the theory of dynamic programming IV-Maximization over discrete sets. Naval Res. Logist. Q. 3, 67–70 (1956).

    Article  MathSciNet  Google Scholar 

  7. Bibak K.: Deletion correcting codes meet the Littlewood–Offord problem. Des. Codes Cryptogr. 88, 2387–2396 (2020).

    Article  MathSciNet  Google Scholar 

  8. Bibak K., Milenkovic O.: Explicit formulas for the weight enumerators of some classes of deletion correcting codes. IEEE Trans. Commun. 67, 1809–1816 (2019).

    Article  Google Scholar 

  9. Bibak K., Kapron B.M., Srinivasan V.: Counting surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group with motivations from string theory and QFT. Nucl. Phys. B 910, 712–723 (2016).

    Article  MathSciNet  Google Scholar 

  10. Bibak K., Kapron B.M., Srinivasan V., Tauraso R., Tóth L.: Restricted linear congruences. J. Number Theory 171, 128–144 (2017).

    Article  MathSciNet  Google Scholar 

  11. Bibak K., Kapron B.M., Srinivasan V., Tóth L.: On an almost-universal hash function family with applications to authentication and secrecy codes. Int. J. Found. Comput. Sci. 29, 357–375 (2018).

    Article  MathSciNet  Google Scholar 

  12. Bibak K., Kapron B.M., Srinivasan V.: Unweighted linear congruences with distinct coordinates and the Varshamov–Tenengolts codes. Des. Codes Cryptogr. 86, 1893–1904 (2018).

    Article  MathSciNet  Google Scholar 

  13. Cai K., Chee Y.M., Gabrys R., Kiah H.M., Nguyen T.T.: Correcting a single indel/edit for DNA-based data storage: linear-time encoders and order-optimality. IEEE Trans. Inf. Theory 67, 3438–3451 (2021).

    Article  MathSciNet  Google Scholar 

  14. Cai K., Kiah H.M., Nguyen T.T., Yaakob E.: Coding for sequence reconstruction for single edits. IEEE Trans. Inf. Theory 68, 66–79 (2022).

    Article  MathSciNet  Google Scholar 

  15. Delsarte Ph., Piret Ph.: Spectral enumerators for certain additive-error-correcting codes over integer alphabets. Inf. Contr. 48, 193–210 (1981).

    Article  MathSciNet  Google Scholar 

  16. Durbin R., Eddy S.R., Krogh A., Mitchison G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998).

    Book  Google Scholar 

  17. Fowler C.F., Garcia S.R., Karaali G.: Ramanujan sums as supercharacters. Ramanujan J. 35, 205–241 (2014).

    Article  MathSciNet  Google Scholar 

  18. Gabrys R., Yaakobi E., Milenkovic O.: Codes in the Damerau distance for deletion and adjacent transposition correction. IEEE Trans. Inf. Theory 64, 2550–2570 (2018).

    Article  MathSciNet  Google Scholar 

  19. Gabrys R., Guruswami V., Ribeiro J.L., Wu K.: Beyond single-deletion correcting codes: substitutions and transpositions. arXiv: 2112.09971 (2021).

  20. Ginzburg B.D.: A certain number-theoretic function which has an application in coding theory (Russian). Problemy Kibernet. 19, 249–252 (1967).

    MathSciNet  MATH  Google Scholar 

  21. Helberg A.S.J., Ferreira H.C.: On multiple insertion/deletion correcting codes. IEEE Trans. Inf. Theory 48, 305–308 (2002).

    Article  Google Scholar 

  22. Helleseth T., Kløve T.: On group-theoretic codes for asymmetric channels. Inf. Control. 49, 1–9 (1981).

    Article  MathSciNet  Google Scholar 

  23. Howgrave-Graham N., Joux A.: New generic algorithms for hard knapsacks. In: Gilbert H. (ed.) Advances in Cryptology (EUROCRYPT 2010), vol. 6110, pp. 235–256. Lecture Notes in Computer Science. Springer, Berlin (2010).

    Chapter  Google Scholar 

  24. Jones N.C., Pevzner P.A.: An Introduction to Bioinformatics Algorithms. MIT Press, Cambridge (2004).

    Google Scholar 

  25. Jurafsky D., Martin J.H.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, third edition draft (2018).

  26. Karp R.M.: Reducibility among combinatorial problems. In: Miller R.E., Thatcher J.W., Bohlinger J.D. (eds.) Complexity of Computer Computations, pp. 85–103. The IBM Research Symposia Series. Springer, Boston (1972).

    Chapter  Google Scholar 

  27. Kellerer H., Pferschy U., Pisinger D.: Knapsack Problems. Springer, Berlin (2004).

    Book  Google Scholar 

  28. Kløve T.: Error correcting codes for the asymmetric channel. Department of Informatics, University of Bergen, Norway, Technical Report (1995).

  29. Kluyver J.C.: Some formulae concerning the integers less than \(n\) and prime to \(n\). Proc. R. Neth. Acad. Arts Sci. (KNAW) 9, 408–414 (1906).

  30. Koiliaris K., Xu C.: Faster pseudopolynomial time algorithms for subset sum. ACM Trans. Algorithms 15, 1–20 (2019).

    Article  MathSciNet  Google Scholar 

  31. Le T.A., Nguyen H.D.: New multiple insertion/deletion correcting codes for non-binary alphabets. IEEE Trans. Inf. Theory 62, 2682–2693 (2016).

    Article  MathSciNet  Google Scholar 

  32. Levenshtein V.I.: Binary codes capable of correcting deletions, insertions, and reversals (in Russian), Dokl. Akad. Nauk SSSR 163, 845–848. English translation in Soviet Physics Dokl. 10 (1966), 707–710 (1965).

  33. Lyubashevsky V., Palacio A., Segev G.: Public-key cryptographic primitives provably as secure as subset sum, Theory of Cryptography Conference (TCC 2010), Lecture Notes in Computer Science, vol 5978. Springer, Berlin, pp. 382–400 (2010).

  34. Manning C.D., Raghavan P., Schütze H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008).

    Book  Google Scholar 

  35. Martello S., Toth P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, Chichester (1990).

    MATH  Google Scholar 

  36. McEliece R.J., Rodemich E.R.: The Constantin-Rao construction for binary asymmetric error-correcting codes. Inf. Control. 44, 187–196 (1980).

    Article  MathSciNet  Google Scholar 

  37. Mercier H., Bhargava V.K., Tarokh V.: A survey of error-correcting codes for channels with symbol synchronization errors. IEEE Commun. Surv. Tutor. 12, 87–96 (2010).

    Article  Google Scholar 

  38. Micciancio D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions. Comput. Complex. 16, 365–411 (2007).

    Article  MathSciNet  Google Scholar 

  39. Mitzenmacher M.: A survey of results for deletion channels and related synchronization channels. Probab. Surv. 6, 1–33 (2009).

    Article  MathSciNet  Google Scholar 

  40. Navarro G.: A guided tour to approximate string matching. ACM Comput. Surv. 33, 31–88 (2001).

    Article  Google Scholar 

  41. Olson J.: An addition theorem modulo \(p\). J. Combin. Theory 5, 45–52 (1968).

  42. Ramanujan S.: On certain trigonometric sums and their applications in the theory of numbers. Trans. Camb. Philos. Soc. 22, 259–276 (1918).

    Google Scholar 

  43. Sadegh Tabatabaei Yazdi S.M., Dolecek L.: A deterministic polynomial-time protocol for synchronizing from deletions. IEEE Trans. Inf. Theory 60, 397–409 (2014).

    Article  MathSciNet  Google Scholar 

  44. Schoeny C., Wachter-Zeh A., Gabrys R., Yaakobi E.: Codes correcting a burst of deletions or insertions. IEEE Trans. Inf. Theory 63, 1971–1985 (2017).

    Article  MathSciNet  Google Scholar 

  45. Sloane N.J.A.: On single-deletion-correcting codes. In: Arasu K.T., Seress A. (eds.) Codes and Designs, Ohio State University, May 2000 (Ray-Chaudhuri Festschrift), pp. 273–291. Walter de Gruyter, Berlin (2002).

    Google Scholar 

  46. Stanley R.P.: Enumerative Combinatorics. Cambridge University Press, Cambridge (2012).

    MATH  Google Scholar 

  47. Stanley R.P., Yoder M.F.: A study of Varshamov codes for asymmetric channels, Jet Propulsion Laboratory, Technical Report 32-1526, Vol. XIV , 117–123 (1973).

  48. Szemerédi E.: Structural approach to subset sum problems. Found. Comput. Math. 16, 1737–1749 (2016).

    Article  MathSciNet  Google Scholar 

  49. Varshamov R.R., Tenengolts G.M.: A code which corrects single asymmetric errors (in Russian), Avtomat. iTelemeh. 26, 288–292. English translation in Automat. Remote Control 26, 286–290 (1965).

  50. Venkataramanan R., Swamy V.N., Ramchandran K.: Low-complexity interactive algorithms for synchronization from deletions, insertions, and substitutions. IEEE Trans. Inf. Theory 61, 5670–5689 (2015).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the referees for carefully reading the paper, and for their useful comments which helped improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khodakhast Bibak.

Additional information

Communicated by T. Helleseth.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibak, K., Zolfaghari, B. The Modular Subset-Sum Problem and the size of deletion correcting codes. Des. Codes Cryptogr. 90, 1721–1734 (2022). https://doi.org/10.1007/s10623-022-01073-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01073-9

Keywords

Mathematics Subject Classification

Navigation